On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography

Léo Ducas, Wessel van Woerden (CWI, Cryptology Group).

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.

.

.

.

.

• • • • • • • • • • • 1 / 19

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

- \bullet Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

• General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.

- \bullet Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattices \implies better efficiency and security.

- \bullet Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattices \implies better efficiency and security.
- Lots of open questions.

$$\boxed{ \frac{\texttt{First minimum}}{\lambda_1(\mathcal{L}) \coloneqq \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2 } }$$

$$\boxed{ \frac{\texttt{First minimum}}{\lambda_1(\mathcal{L}) \coloneqq \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2 } }$$

$$rac{ extsf{Determinant}}{ extsf{det}(\mathcal{L}):= extsf{vol}(\mathbb{R}^n/\mathcal{L})=| extsf{det}(m{B})|}$$

$$egin{aligned} rac{ ext{First minimum}}{\lambda_1(\mathcal{L}) \coloneqq \min_{oldsymbol{x} \in \mathcal{L} ackslash \{oldsymbol{0}\}} \|oldsymbol{x}\|_2 \end{aligned}$$

$$frac{ ext{Determinant}}{ ext{det}(\mathcal{L}):= ext{vol}(\mathbb{R}^n/\mathcal{L})=| ext{det}(m{B})|}$$

$$\lambda_1(\mathcal{L}) \leq \underbrace{\frac{2 \det(\mathcal{L})^{1/n}}{\operatorname{vol}(\mathcal{B}^n)^{1/n}}}_{\operatorname{Mk}(\mathcal{L})} \leq \sqrt{n} \det(\mathcal{L})^{1/n}$$

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^n$

 $\begin{array}{|c|c|c|} & \underline{\mathsf{SVP}} \\ & \text{Find a shortest nonzero} \\ \text{vector } \boldsymbol{\nu} \in \mathcal{L} \text{ of length } \lambda_1(\mathcal{L}) \leq \mathsf{Mk}(\mathcal{L}). \end{array}$

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^n$

BDD						
Given a	target $oldsymbol{t} = oldsymbol{v} + oldsymbol{e} \in \mathbb{R}^{oldsymbol{n}}$ with					
$oldsymbol{v}\in\mathcal{L}$ and	$\ m{e}\ < ho \leq rac{1}{2} \lambda_1(\mathcal{L}) \leq rac{1}{2} \operatorname{Mk}(\mathcal{L}),$					
recover	the closest vector $\mathbf{v} \in \mathcal{L}$.					

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^n$

 $\begin{array}{c} \underline{\text{SVP}}\\ \text{Find a shortest }\underline{\text{nonzero}}\\ \text{vector } \boldsymbol{\nu} \in \mathcal{L} \text{ of length } \lambda_1(\mathcal{L}) \leq \mathsf{Mk}(\mathcal{L}). \end{array}$

BDD							
Given a target $oldsymbol{t} = oldsymbol{v} + oldsymbol{e} \in \mathbb{R}^{oldsymbol{n}}$ with							
$ m{v}\in \mathcal{L} ext{ and } \ m{e}\ < ho \leq rac{1}{2}\lambda_1(\mathcal{L}) \leq rac{1}{2}\operatorname{Mk}(\mathcal{L}),$							
recover the $closest$ vector $oldsymbol{v} \in \mathcal{L}$.							

Hardness depends on the gap $gap(\mathcal{L}) := \frac{Mk(\mathcal{L})}{\lambda_1(\mathcal{L})}$ or $gap(\mathcal{L}, \rho) := \frac{Mk(\mathcal{L})}{\rho}$. (state-of-art heuristic algorithms) [ADPS16], [AGVW17], [PV21]

Good basis (Secret key)

Babai's nearest plane algorithm

Encrypt by adding a small error

Good basis (Secret key)

Decrypt using the good basis

Large gap

Current lattice based crypto relies on hardness of decoding with

 $gap(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$.

Large gap

Current lattice based crypto relies on hardness of decoding with

 $gap(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$.

An example: Prime Lattice [CR88] Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{\texttt{prime}} \coloneqq \{ x = (x_1, \ldots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 mod m \}.$$

Large gap

Current lattice based crypto relies on hardness of decoding with

 $gap(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$.

An example: Prime Lattice [CR88] Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{ ext{prime}} := \{ x = (x_1, \dots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 modes m \}.$$

• Efficiently decode up to large radius ho by trial division.

Large gap

Current lattice based crypto relies on hardness of decoding with

 $gap(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$.

An example: Prime Lattice [CR88] Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{\texttt{prime}} := \{ x = (x_1, \ldots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 \mod m \}.$$

- Efficiently decode up to large radius ho by trial division.
- With the right parameters $ext{gap}(\mathcal{L}_{ ext{prime}}, oldsymbol{
 ho}) = \Theta(ext{log}(oldsymbol{n}))$ [DP19].

LIP

Given isomorphic $B, B' \in GL_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

LIP

Given isomorphic $B, B' \in GL_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

• The lattice analogue of 'vintage' McEliece ${m G}'={m P}\cdot{m G}\cdot{m S}$.

LIP

Given isomorphic $B, B' \in GL_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

- The lattice analogue of 'vintage' McEliece ${m G}'={m P}\cdot{m G}\cdot{m S}$.
- At least as hard as Graph Isomorphism (doesn't say much..).

LIP

Given isomorphic $B, B' \in GL_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

- The lattice analogue of 'vintage' McEliece ${m G}'={m P}\cdot{m G}\cdot{m S}$.
- At least as hard as Graph Isomorphism (doesn't say much..).

Algorithms

- $Min(\mathcal{L}(\boldsymbol{B'})) = \boldsymbol{O} \cdot Min(\mathcal{L}(\boldsymbol{B})).$
- Best practical algorithm: backtrack search all isometries between the sets of short vectors.
- Best proven algorithm uses short primal and dual vectors $(n^{O(n)}$ time and space).

 $oldsymbol{O}\in \mathcal{O}_n(\mathbb{R})$ Computing with reals is a complex problem.

• $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$
- $\boldsymbol{Q}:=\boldsymbol{B}^t\boldsymbol{B}\in \boldsymbol{\mathcal{S}}_n^{>0}(\mathbb{R})$ induces a positive definite quadratic form.

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$
- ${m Q}:={m B}^t{m B}\in {\mathcal S}_n^{>0}({\mathbb R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^n with i.p. $\langle x,y
 angle_Q=x^tQy$ and norm $\|x\|_Q^2:=x^tQx$.

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$
- ${m Q}:={m B}^t{m B}\in {\mathcal S}^{>0}_n({\mathbb R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^n with i.p. $\langle x,y
 angle_Q=x^tQy$ and norm $\|x\|_Q^2:=x^tQx$.
- $\lambda_1(Q) := \min_{x \in \mathbb{Z}^n \setminus \{0\}} \|x\|_Q.$

 $oldsymbol{O}\in \mathcal{O}_n(\mathbb{R})$ Computing with reals is a complex problem.

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$
- ${m Q}:={m B}^t{m B}\in {\mathcal S}^{>0}_n({\mathbb R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^n with i.p. $\langle x,y
 angle_Q=x^tQy$ and norm $\|x\|_Q^2:=x^tQx$.
- $\lambda_1(\mathbf{Q}) := \min_{\mathbf{x}\in\mathbb{Z}^n\setminus\{\mathbf{0}\}} \|\mathbf{x}\|_{\mathbf{Q}}.$

LIP (restated)

Given equivalent $Q, Q' \in \mathcal{S}_n^{>0}(\mathbb{R})$, find $U \in \operatorname{GL}_n(\mathbb{Z})$ s.t. $Q' = U^t Q U$.

 $oldsymbol{O}\in \mathcal{O}_n(\mathbb{R})$ Computing with reals is a complex problem.

- $B' = OBU \implies (B')^t B' = U^t B^t O^t OBU = U^t B^t BU$.
- $(B')^t B' = U^t B^t B U \implies \exists O \in \mathcal{O}_n(\mathbb{R}) : B' = OBU.$
- ${m Q}:={m B}^t{m B}\in {\mathcal S}^{>0}_n({\mathbb R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^n with i.p. $\langle x,y
 angle_Q=x^tQy$ and norm $\|x\|_Q^2:=x^tQx$.
- $\lambda_1(\mathbf{Q}) := \min_{\mathbf{x} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_{\mathbf{Q}}.$

LIP (restated)

Given equivalent $Q, Q' \in \mathcal{S}_n^{>0}(\mathbb{R})$, find $U \in \operatorname{GL}_n(\mathbb{Z})$ s.t. $Q' = U^t Q U$.

• Only work with $oldsymbol{Q}\in \mathcal{S}_n^{>0}(\mathbb{Z}).$

Encryption [informal]

Prerequisite

Let ${m S}$ be a quadratic form with an efficient decoder up to some radius $ho < \lambda_1({m S})/2$.

Keygen :

Sample $(pk, sk) := (P, U) \leftarrow \mathcal{D}_{\sigma}([S])$, such that $P = U^{t}SU$. $\begin{array}{c} & \underline{\operatorname{Encrypt}(P, m)} : \\ c := m + e \text{ s.t. } \|e\|_{P} \leq \rho \\ & \underline{\operatorname{Decrypt}(U, c)} : \\ m' := \underline{\operatorname{Decode}(S, Uc) \text{ s.t. }} \|m' - Uc\|_{S} \leq \rho \\ & m = U^{-1}m' \end{array}$

Average case instances

• Task: sample a 'random' public key $P = U^t S U$ together with U?

Average case instances

• Task: sample a 'random' public key $P = U^t S U$ together with U?

$(\pmb{R}, \pmb{U}) \leftarrow \mathcal{D}_{\sigma}([\pmb{Q}])$, given $\pmb{S} \in [\pmb{Q}]$, σ large enough.

- 1. Sample *n* vectors $y_1, \ldots, y_n \in \mathbb{Z}^n$ from $\mathcal{D}_{S,\sigma}$ (discrete gaussian). Repeat if not linearly independent.
- 2. Let $oldsymbol{Y} = oldsymbol{U}oldsymbol{T}$ be the unique upper triangular HNF decomposition.
- 3. Return $(\boldsymbol{R} = \boldsymbol{U}^t \boldsymbol{S} \boldsymbol{U}, \boldsymbol{U})$.

Average case instances

• Task: sample a 'random' public key $P = U^t S U$ together with U?

$(\pmb{R}, \pmb{U}) \leftarrow \mathcal{D}_{\sigma}([\pmb{Q}])$, given $\pmb{S} \in [\pmb{Q}]$, σ large enough.

- 1. Sample *n* vectors $y_1, \ldots, y_n \in \mathbb{Z}^n$ from $\mathcal{D}_{S,\sigma}$ (discrete gaussian). Repeat if not linearly independent.
- 2. Let $\boldsymbol{Y} = \boldsymbol{U}\boldsymbol{T}$ be the unique upper triangular HNF decomposition.
- 3. Return $(\boldsymbol{R} = \boldsymbol{U}^t \boldsymbol{S} \boldsymbol{U}, \boldsymbol{U})$.

Properties

- \pmb{R} only depends on the class $[\pmb{Q}]$ and $\pmb{\sigma}$ (ZKPoK, identification).
- Defines an average-case LIP problem ac-LIP $_{\sigma}^{s}$.
- Given any representative we can sample at $\sigma \geq 2^{\Theta(n)} \cdot \lambda_n([{m{S}}])$
 - (\implies worst-case to average-case reduction).

Security Proof

Actual hardness assumption

1. For a uniformly random $O \in \mathcal{O}_n(\mathbb{R})$, decoding in $O \cdot \mathcal{L}_0$ is hard.

Distinguishing LIP

 $\Delta \operatorname{LIP}^{\mathcal{Q}_0,\mathcal{Q}_1}_\sigma$

Given two quadratic forms $Q_0, Q_1 \in \mathcal{S}_n^{>0}$, and $Q \in \mathcal{D}_{\sigma}([Q_b])$ for a uniform random $b \in \{0,1\}$, find b.

19

Security Proof

Security Assumption [informal]

- 1. $O \cdot \mathcal{L}_0$ is indistinguishable from a random lattice.
- 2. Decoding in a *random* lattice is hard.

Security Proof

Security Assumption [informal]

..indistinguishable from some lattice with a dense sublattice.
 2. Decoding in a random lattice is hard.

- det(**Q**).
- $gcd(Q) := gcd(Q_{ij})_{i,j}$
- $\operatorname{gcd}\{\|x\|_Q^2: x \in \mathbb{Z}^n\}$
- Self dual? (up to scaling)

- det(**Q**).
- $gcd(Q) := gcd(Q_{ij})_{i,j}$
- $\operatorname{gcd}\{\|x\|_Q^2: x \in \mathbb{Z}^n\}$
- Self dual? (up to scaling)
- Equivalence over $R \supset \mathbb{Z}$, $U \in \operatorname{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \forall p \ \mathbb{Z}_p\}$

- det(**Q**).
- $gcd(Q) := gcd(Q_{ij})_{i,j}$
- $\operatorname{gcd}\{\|x\|_Q^2: x \in \mathbb{Z}^n\}$
- Self dual? (up to scaling)
- Equivalence over $R \supset \mathbb{Z}$, $U \in \operatorname{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \forall p \ \mathbb{Z}_p\}$

Definition (Conway Genus)

The Genus of $Q \in \mathcal{S}_n^{>0}(\mathbb{Z})$ represents the \mathbb{Z}_p -equivalence classes $[Q]_{\mathbb{Z}_p}$ for p = 2 and all primes $p | \det(Q)$.

- det(**Q**).
- $gcd(Q) := gcd(Q_{ij})_{i,j}$
- $\operatorname{gcd}\{\|x\|_Q^2: x \in \mathbb{Z}^n\}$
- Self dual? (up to scaling)
- Equivalence over $R \supset \mathbb{Z}$, $U \in \operatorname{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \forall p \ \mathbb{Z}_p\}$

Definition (Conway Genus)

The Genus of $Q \in \mathcal{S}_n^{>0}(\mathbb{Z})$ represents the \mathbb{Z}_p -equivalence classes $[Q]_{\mathbb{Z}_p}$ for p = 2 and all primes $p | \det(Q)$.

• Covers all above invariants, and is efficiently computable.

- det(**Q**).
- $gcd(Q) := gcd(Q_{ij})_{i,j}$
- $\operatorname{gcd}\{\|x\|_Q^2: x \in \mathbb{Z}^n\}$
- Self dual? (up to scaling)
- Equivalence over $R \supset \mathbb{Z}$, $U \in \operatorname{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \forall p \ \mathbb{Z}_p\}$

Definition (Conway Genus)

The Genus of $Q \in \mathcal{S}_n^{>0}(\mathbb{Z})$ represents the \mathbb{Z}_p -equivalence classes $[Q]_{\mathbb{Z}_p}$ for p = 2 and all primes $p | \det(Q)$.

• Covers all above invariants, and is efficiently computable.

Genus attack

If genus $(Q_0) \neq \text{genus}(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1}$ is easy.

• If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_1(Q_0) \neq \lambda_1(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max $\{\operatorname{gap}(Q_0),\operatorname{gap}(Q_1)\}$.

• If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_1(Q_0) \neq \lambda_1(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max $\{\operatorname{gap}(Q_0),\operatorname{gap}(Q_1)\}$.

• Dual LIP: $\boldsymbol{Q} = \boldsymbol{U}^t \boldsymbol{Q}_b \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-1} = \boldsymbol{U}^{-1} \boldsymbol{Q}_b^{-1} \boldsymbol{U}^{-t}$.

• If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_1(Q_0) \neq \lambda_1(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max $\{\operatorname{gap}(Q_0),\operatorname{gap}(Q_1)\}$.

• Dual LIP: $\boldsymbol{Q} = \boldsymbol{U}^t \boldsymbol{Q}_b \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-1} = \boldsymbol{U}^{-1} \boldsymbol{Q}_b^{-1} \boldsymbol{U}^{-t}.$

Dual SVP Attack If $\lambda_1(Q_0^{-1}) \neq \lambda_1(Q_1^{-1})$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max{gap(Q_0^{-1}), gap(Q_1^{-1})}.

• If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_1(Q_0) \neq \lambda_1(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max $\{\operatorname{gap}(Q_0),\operatorname{gap}(Q_1)\}$.

• Dual LIP: $\boldsymbol{Q} = \boldsymbol{U}^t \boldsymbol{Q}_b \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-1} = \boldsymbol{U}^{-1} \boldsymbol{Q}_b^{-1} \boldsymbol{U}^{-t}.$

Dual SVP Attack

If $\lambda_1(\boldsymbol{Q}_0^{-1}) \neq \lambda_1(\boldsymbol{Q}_1^{-1})$, then $\Delta \text{LIP}^{Q_0,Q_1} \leq \text{SVP}$, with Minkowski Gap max $\{\text{gap}(\boldsymbol{Q}_0^{-1}), \text{gap}(\boldsymbol{Q}_1^{-1})\}$.

• Dense sublattice attack? (overstretched NTRU)

• If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_1(Q_0) \neq \lambda_1(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1} \leq \operatorname{SVP}$, with Minkowski Gap max $\{\operatorname{gap}(Q_0),\operatorname{gap}(Q_1)\}$.

• Dual LIP: $\boldsymbol{Q} = \boldsymbol{U}^t \boldsymbol{Q}_b \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-1} = \boldsymbol{U}^{-1} \boldsymbol{Q}_b^{-1} \boldsymbol{U}^{-t}.$

Dual SVP Attack

If $\lambda_1(\boldsymbol{Q}_0^{-1}) \neq \lambda_1(\boldsymbol{Q}_1^{-1})$, then $\Delta \text{LIP}^{\boldsymbol{Q}_0, \boldsymbol{Q}_1} \leq \text{SVP}$, with Minkowski Gap max $\{\text{gap}(\boldsymbol{Q}_0^{-1}), \text{gap}(\boldsymbol{Q}_1^{-1})\}$.

• Dense sublattice attack? (overstretched NTRU)

Open Question Are there better attacks when the genera match?

Theorem [informal]

Let \mathcal{L}_0 be a decodable lattice, and let \mathcal{L}_1 be a lattice with a dense sublattice, then our scheme is CPA-secure if $\Delta \sqcup P^{Q_0,Q_1}$ is hard.

Theorem [informal]

Let \mathcal{L}_0 be a decodable lattice, and let \mathcal{L}_1 be a lattice with a dense sublattice, then our scheme is CPA-secure if $\Delta \operatorname{LIP}^{Q_0,Q_1}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{n/2}$ be a ρ -decodable lattice with integral gram matrix. • For some $g \in \mathbb{Z}_{>1}$ we define
 - $\mathcal{L}_0 := oldsymbol{g} \mathcal{L} \oplus (oldsymbol{g}+1) \mathcal{L}$ & $\mathcal{L}_1 := \mathcal{L} \oplus oldsymbol{g}(oldsymbol{g}+1) \mathcal{L}.$

Theorem [informal]

Let \mathcal{L}_0 be a decodable lattice, and let \mathcal{L}_1 be a lattice with a dense sublattice, then our scheme is CPA-secure if $\Delta \operatorname{LIP}^{Q_0,Q_1}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{n/2}$ be a ho-decodable lattice with integral gram matrix.
- ullet For some $g\in\mathbb{Z}_{\geq1}$ we define

 $\mathcal{L}_0 := oldsymbol{g}\mathcal{L} \oplus (oldsymbol{g}+1)\mathcal{L}$ & $\mathcal{L}_1 := \mathcal{L} \oplus oldsymbol{g}(oldsymbol{g}+1)\mathcal{L}.$

• Dense sublattice $\mathcal{L} \subset \mathcal{L}_1$ (set $m{g} = \Theta\left(\operatorname{gap}(\mathcal{L}^*) \cdot \operatorname{gap}(\mathcal{L},
ho)
ight)$).

Theorem [informal]

Let \mathcal{L}_0 be a decodable lattice, and let \mathcal{L}_1 be a lattice with a dense sublattice, then our scheme is CPA-secure if $\Delta \sqcup P^{Q_0,Q_1}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{n/2}$ be a ho-decodable lattice with integral gram matrix.
- ullet For some $g\in\mathbb{Z}_{\geq1}$ we define

$$\mathcal{L}_0 := oldsymbol{g} \mathcal{L} \oplus (oldsymbol{g}+1) \mathcal{L}$$
 & $\mathcal{L}_1 := \mathcal{L} \oplus oldsymbol{g}(oldsymbol{g}+1) \mathcal{L}$

• Dense sublattice $\mathcal{L} \subset \mathcal{L}_1$ (set $m{g} = \Theta\left(\operatorname{gap}(\mathcal{L}^*) \cdot \operatorname{gap}(\mathcal{L},
ho)
ight)$).

Cryptanalysis

 $\begin{array}{ll} \text{Invariants:} & \text{genus}(\mathcal{L}_0) = \text{genus}(\mathcal{L}_1).\\ \text{SVP: if } \text{gap}(\mathcal{L}) \leq \textit{\textbf{f}}, \ \text{gap}(\mathcal{L}^*) \leq \textit{\textbf{f}}^* \ \text{and} \ \text{gap}(\mathcal{L},\rho) \leq \textit{\textbf{f}}', \ \text{then} \end{array}$

 $\max\{ \mathsf{gap}(\mathcal{L}_0), \mathsf{gap}(\mathcal{L}_0^*), \mathsf{gap}(\mathcal{L}_1), \mathsf{gap}(\mathcal{L}_1^*) \} \leq \textit{O}(\max(\textit{f}, \textit{f}^*) \cdot \textit{f}^* \cdot \textit{f}')$

Decodable Lattices

Lattice	$m{f}:= gap(\mathcal{L})$	$oldsymbol{f}^*:= ext{gap}(\mathcal{L}^*)$	$oldsymbol{f'}:= extsf{gap}(\mathcal{L}, oldsymbol{ ho})$
Z ⁿ	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
'Random' Lattice	$\Theta(1)$	$\Theta(1)$	$2^{\Theta(n)}$
NTRU, LWE, ···	$\Theta(1)$	$\Theta(1)$	$\Omega(\sqrt{n})$
Prime Lattice	$\Theta(\log n)$	$\Omega(\sqrt{n})$	$\Theta(\log n)$ [CR88, DP19]
Barnes-Sloane	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$ [MP20]
Reed-Solomon	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$ [BP22]
Barnes-Wall	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$ [MN08]

Decodable Lattices

Lattice	$f := gap(\mathcal{L})$	$oldsymbol{f}^*:= ext{gap}(oldsymbol{\mathcal{L}}^*)$	$oldsymbol{f'}:= extsf{gap}(\mathcal{L}, oldsymbol{ ho})$
Z ⁿ	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
'Random' Lattice	$\Theta(1)$	$\Theta(1)$	$2^{\Theta(n)}$
NTRU, LWE, ···	$\Theta(1)$	$\Theta(1)$	$\Omega(\sqrt{n})$
Prime Lattice	$\Theta(\log n)$	$\Omega(\sqrt{n})$	$\Theta(\log n)$ [CR88, DP19]
Barnes-Sloane	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$ [MP20]
Reed-Solomon	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$ [BP22]
Barnes-Wall	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$ [MN08]

Open Question

Can we construct a decodable lattice with $\max\{f, f^*, f'\} \leq \operatorname{polylog}(n)$?

Future work

Remarkable Lattices

Can we construct a decodable lattice with $\max\{f, f^*, f'\} \leq \mathsf{polylog}(n)$?

LIP to Δ LIP? Can we reduce the search version of LIP to the distinguishing version? (for \mathbb{Z}^n we can [Szydlo03])

Genus Sampling

Can we sample 'random' [Q'] such that genus(Q') = genus(Q). Is [Q'] expected to have a good geometry? Is decoding in [Q'] hard?

Module-LIP

LIP is easy for some Ideal lattices [Gentry-Szydlo, Lenstra-Silverberg]. Is rank $k \geq 2$ module-LIP secure?

Thank you! :) Full paper at eprint.iacr.org/2021/1332