On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography

Léo Ducas, Wessel van Woerden (CWI, Cryptology Group).

CWI

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattices \Longrightarrow better efficiency and security.

Motivation

- Most NIST PQC finalists (5/7) are based on hard lattice problems.
- LWE, SIS, NTRU lattices, while versatile, have poor decoding properties.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?
- Many ad-hoc methods have been broken by ad-hoc attacks.

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattices \Longrightarrow better efficiency and security.
- Lots of open questions.

Lattice $\mathcal{L}(B):=\left\{\sum_{i} x_{i} \boldsymbol{b}_{i}: x \in \mathbb{Z}^{\boldsymbol{n}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}$

Lattice $\mathcal{L}(B):=\left\{\sum_{i} x_{i} \boldsymbol{b}_{i}: x \in \mathbb{Z}^{\boldsymbol{n}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}$

Lattice $\mathcal{L}(B):=\left\{\sum_{i} x_{i} \boldsymbol{b}_{i}: x \in \mathbb{Z}^{\boldsymbol{n}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}$

Lattice $\mathcal{L}(B):=\left\{\sum_{i} x_{i} \boldsymbol{b}_{i}: x \in \mathbb{Z}^{\boldsymbol{n}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}$

$$
\frac{\text { First minimum }}{\lambda_{1}(\mathcal{L}):=\min _{x \in \mathcal{L} \backslash\{0\}}\|x\|_{2}}
$$

$$
\operatorname{det}(\mathcal{L}):=\frac{\text { Determinant }}{\operatorname{vol}\left(\mathbb{R}^{n} / \mathcal{L}\right)=|\operatorname{det}(\boldsymbol{B})|}
$$

Minkowski's Theorem
$\lambda_{1}(\mathcal{L}) \leq \underbrace{2 \frac{\operatorname{det}(\mathcal{L})^{1 / n}}{\operatorname{vol}\left(\mathcal{B}^{n}\right)^{1 / n}}}_{\operatorname{Mk}(\mathcal{L})} \leq \sqrt{n} \operatorname{det}(\mathcal{L})^{1 / n}$

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n}}$

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n}}$

Hard Problems

Lattice $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n}}$

Good basis (Secret key)

Bad basis (Public key)

Babai's nearest plane algorithm

Bad basis (Public key)

Good basis (Secret key)
Bad basis (Public key)

Encrypt by adding a small error

Good basis (Secret key)

Bad basis (Public key)

Decrypt using the good basis

Large gap

Current lattice based crypto relies on hardness of decoding with

$$
\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n})
$$

Broken by SVP in dimension $\boldsymbol{\beta} \leq \boldsymbol{n} / \mathbf{2}+\boldsymbol{o}(\boldsymbol{n})$.

Remarkable Lattices

Large gap

Current lattice based crypto relies on hardness of decoding with

$$
\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{\boldsymbol{n}})
$$

Broken by SVP in dimension $\boldsymbol{\beta} \leq \boldsymbol{n} / \mathbf{2}+\boldsymbol{o}(\boldsymbol{n})$.

An example: Prime Lattice [CR88]

Let $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ be distinct small primes not dividing \boldsymbol{m}, we define:

$$
\mathcal{L}_{\text {prime }}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: \prod p_{i}^{x_{i}}=\mathbf{1} \bmod m\right\}
$$

Remarkable Lattices

Large gap

Current lattice based crypto relies on hardness of decoding with

$$
\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n})
$$

Broken by SVP in dimension $\boldsymbol{\beta} \leq \boldsymbol{n} / \mathbf{2}+\boldsymbol{o}(\boldsymbol{n})$.

An example: Prime Lattice [CR88]

Let $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ be distinct small primes not dividing \boldsymbol{m}, we define:

$$
\mathcal{L}_{\text {prime }}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: \prod p_{i}^{x_{i}}=\mathbf{1} \bmod m\right\}
$$

- Efficiently decode up to large radius ρ by trial division.

Remarkable Lattices

Large gap

Current lattice based crypto relies on hardness of decoding with

$$
\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n})
$$

Broken by SVP in dimension $\boldsymbol{\beta} \leq \boldsymbol{n} / \mathbf{2}+\boldsymbol{o}(\boldsymbol{n})$.

An example: Prime Lattice [CR88]

Let $\boldsymbol{p}_{\mathbf{1}}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ be distinct small primes not dividing \boldsymbol{m}, we define:

$$
\mathcal{L}_{\text {prime }}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{\boldsymbol{n}}: \prod p_{i}^{x_{i}}=1 \bmod m\right\}
$$

- Efficiently decode up to large radius ρ by trial division.
- With the right parameters $\operatorname{gap}\left(\mathcal{L}_{\text {prime }}, \boldsymbol{\rho}\right)=\Theta(\log (\boldsymbol{n}))$ [DP19].

How to hide the remarkable lattice?

Good lattice (Secret key)

Bad basis (Public key)

- - - \quad

\mathcal{L}

How to hide the remarkable lattice?

How to hide the remarkable lattice?

How to hide the remarkable lattice?

Lattice Isomorphism Problem

LIP

Given isomorphic $\boldsymbol{B}, \boldsymbol{B}^{\prime} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{R})$, find $\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$ and $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{B}^{\prime}=\boldsymbol{O} \cdot \boldsymbol{B} \cdot \boldsymbol{U}$.

Lattice Isomorphism Problem

LIP
Given isomorphic $\boldsymbol{B}, \boldsymbol{B}^{\prime} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{R})$, find $\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$ and $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{B}^{\prime}=\boldsymbol{O} \cdot \boldsymbol{B} \cdot \boldsymbol{U}$.

- The lattice analogue of 'vintage' McEliece $\boldsymbol{G}^{\prime}=\boldsymbol{P} \cdot \boldsymbol{G} \cdot \boldsymbol{S}$.

Lattice Isomorphism Problem

LIP
Given isomorphic $\boldsymbol{B}, \boldsymbol{B}^{\prime} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{R})$, find $\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$ and $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{B}^{\prime}=\boldsymbol{O} \cdot \boldsymbol{B} \cdot \boldsymbol{U}$.

- The lattice analogue of 'vintage' McEliece $\boldsymbol{G}^{\prime}=\boldsymbol{P} \cdot \boldsymbol{G} \cdot \boldsymbol{S}$.
- At least as hard as Graph Isomorphism (doesn't say much..).

Lattice Isomorphism Problem

LIP
Given isomorphic $\boldsymbol{B}, \boldsymbol{B}^{\prime} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{R})$, find $\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$ and $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{B}^{\prime}=\boldsymbol{O} \cdot \boldsymbol{B} \cdot \boldsymbol{U}$.

- The lattice analogue of 'vintage' McEliece $\boldsymbol{G}^{\prime}=\boldsymbol{P} \cdot \boldsymbol{G} \cdot \boldsymbol{S}$.
- At least as hard as Graph Isomorphism (doesn't say much..).

Algorithms

- $\operatorname{Min}\left(\mathcal{L}\left(\boldsymbol{B}^{\prime}\right)\right)=\boldsymbol{O} \cdot \operatorname{Min}(\mathcal{L}(\boldsymbol{B}))$.
- Best practical algorithm: backtrack search all isometries between the sets of short vectors.
- Best proven algorithm uses short primal and dual vectors ($\boldsymbol{n}^{\boldsymbol{O}(n)}$ time and space).

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{n}(\mathbb{R})$

Computing with reals is a complex problem.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{n}(\mathbb{R})$

Computing with reals is a complex problem.

- $B^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(B^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} O^{t} O B U=\boldsymbol{U}^{t} B^{t} B U$.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{n}(\mathbb{R})$

Computing with reals is a complex problem.

- $B^{\prime}=\mathbf{O B U} \Longrightarrow\left(B^{\prime}\right)^{t} B^{\prime}=U^{t} B^{t} O^{t} O B U=U^{t} B^{t} B U$.
- $\left(B^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$

Computing with reals is a complex problem.

- $\boldsymbol{B}^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(B^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} O^{t} O B U=\boldsymbol{U}^{t} \boldsymbol{B}^{t} B \boldsymbol{B}$.
- $\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.
- $\boldsymbol{Q}:=\boldsymbol{B}^{t} \boldsymbol{B} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$ induces a positive definite quadratic form.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$

Computing with reals is a complex problem.

- $\boldsymbol{B}^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(B^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} O^{t} O B U=\boldsymbol{U}^{t} \boldsymbol{B}^{t} B \boldsymbol{B}$.
- $\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.
- $\boldsymbol{Q}:=\boldsymbol{B}^{t} \boldsymbol{B} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^{n} with i.p. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{Q}}=\boldsymbol{x}^{t} \boldsymbol{Q y}$ and norm $\|\boldsymbol{x}\|_{\boldsymbol{Q}}^{2}:=\boldsymbol{x}^{t} \boldsymbol{Q x}$.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$

Computing with reals is a complex problem.

- $\boldsymbol{B}^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(B^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} O^{t} O B U=\boldsymbol{U}^{t} \boldsymbol{B}^{t} B \boldsymbol{B}$.
- $\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.
- $\boldsymbol{Q}:=\boldsymbol{B}^{t} \boldsymbol{B} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^{n} with i.p. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{Q}=\boldsymbol{x}^{t} \boldsymbol{Q y}$ and norm $\|x\|_{Q}^{2}:=\boldsymbol{x}^{t} \boldsymbol{Q x}$.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$

Computing with reals is a complex problem.

- $\boldsymbol{B}^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{O}^{t} O B \boldsymbol{U}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} B \boldsymbol{U}$.
- $\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.
- $\boldsymbol{Q}:=\boldsymbol{B}^{t} \boldsymbol{B} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^{n} with i.p. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{Q}}=\boldsymbol{x}^{t} \boldsymbol{Q} \boldsymbol{y}$ and norm $\|\boldsymbol{x}\|_{\boldsymbol{Q}}^{2}:=\boldsymbol{x}^{t} \boldsymbol{Q} \boldsymbol{x}$.

LIP (restated)

Given equivalent $\boldsymbol{Q}, \boldsymbol{Q}^{\prime} \in \mathcal{S}_{\boldsymbol{n}}^{>0}(\mathbb{R})$, find $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{Q}^{\prime}=\boldsymbol{U}^{t} \mathbf{Q} \boldsymbol{U}$.

Quadratic Forms

$\boldsymbol{O} \in \mathcal{O}_{n}(\mathbb{R})$

Computing with reals is a complex problem.

- $\boldsymbol{B}^{\prime}=\boldsymbol{O B U} \Longrightarrow\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{O}^{t} O B \boldsymbol{U}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} B \boldsymbol{U}$.
- $\left(\boldsymbol{B}^{\prime}\right)^{t} \boldsymbol{B}^{\prime}=\boldsymbol{U}^{t} \boldsymbol{B}^{t} \boldsymbol{B U} \Longrightarrow \exists \boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R}): \boldsymbol{B}^{\prime}=\boldsymbol{O B U}$.
- $\boldsymbol{Q}:=\boldsymbol{B}^{t} \boldsymbol{B} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$ induces a positive definite quadratic form.
- Lattice \mathbb{Z}^{n} with i.p. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{Q}}=\boldsymbol{x}^{t} \boldsymbol{Q} \boldsymbol{y}$ and norm $\|\boldsymbol{x}\|_{\boldsymbol{Q}}^{2}:=\boldsymbol{x}^{t} \boldsymbol{Q} \boldsymbol{x}$.
- $\lambda_{1}(Q):=\min _{x \in \mathbb{Z}} \mathbb{Z}_{\{0\}}\|x\|_{Q}$.

LIP (restated)

Given equivalent $\boldsymbol{Q}, \boldsymbol{Q}^{\prime} \in \mathcal{S}_{n}^{>0}(\mathbb{R})$, find $\boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\mathbb{Z})$ s.t. $\boldsymbol{Q}^{\prime}=\boldsymbol{U}^{t} \mathbf{Q} \boldsymbol{U}$.

- Only work with $Q \in \mathcal{S}_{n}^{>0}(\mathbb{Z})$.

Encryption [informal]

Prerequisite
 Let S be a quadratic form with an efficient decoder up to some radius $\rho<\lambda_{1}(S) / 2$.

Keygen :

Sample $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}):=(\boldsymbol{P}, \boldsymbol{U}) \leftarrow \mathcal{D}_{\sigma}([\boldsymbol{S}])$, such that $\boldsymbol{P}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}$.
Encrypt ($\boldsymbol{P}, \boldsymbol{m}$) :

$$
\boldsymbol{c}:=\boldsymbol{m}+\boldsymbol{e} \text { s.t. } \quad\|\boldsymbol{e}\|_{P} \leq \rho
$$

Decrypt (U, \boldsymbol{c})

$$
\begin{gathered}
\boldsymbol{m}^{\prime}:=\operatorname{Decode}(S, U c) \text { s.t. } \quad\left\|\boldsymbol{m}^{\prime}-\boldsymbol{U c}\right\|_{S} \leq \rho \\
\boldsymbol{m}=\boldsymbol{U}^{-\mathbf{1}} \boldsymbol{m}^{\prime}
\end{gathered}
$$

Average case instances

- Task: sample a 'random' public key $\boldsymbol{P}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}$ together with \boldsymbol{U} ?

Average case instances

- Task: sample a 'random' public key $\boldsymbol{P}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}$ together with \boldsymbol{U} ?
$(\boldsymbol{R}, \boldsymbol{U}) \leftarrow \mathcal{D}_{\sigma}([\boldsymbol{Q}])$, given $S \in[Q], \sigma$ large enough.

1. Sample \boldsymbol{n} vectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}} \in \mathbb{Z}^{\boldsymbol{n}}$ from $\mathcal{D}_{S, \sigma}$ (discrete gaussian).

Repeat if not linearly independent.
2. Let $\boldsymbol{Y}=\boldsymbol{U T}$ be the unique upper triangular HNF decomposition.
3. Return $\left(\boldsymbol{R}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}, \boldsymbol{U}\right)$.

Average case instances

- Task: sample a 'random' public key $\boldsymbol{P}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}$ together with \boldsymbol{U} ?
$(\boldsymbol{R}, \boldsymbol{U}) \leftarrow \mathcal{D}_{\sigma}([\boldsymbol{Q}])$, given $\boldsymbol{S} \in[\boldsymbol{Q}], \boldsymbol{\sigma}$ large enough.

1. Sample \boldsymbol{n} vectors $\boldsymbol{y}_{\mathbf{1}}, \ldots, \boldsymbol{y}_{\boldsymbol{n}} \in \mathbb{Z}^{\boldsymbol{n}}$ from $\mathcal{D}_{S, \sigma}$ (discrete gaussian).

Repeat if not linearly independent.
2. Let $\boldsymbol{Y}=\boldsymbol{U T}$ be the unique upper triangular HNF decomposition.
3. Return $\left(\boldsymbol{R}=\boldsymbol{U}^{t} \boldsymbol{S} \boldsymbol{U}, \boldsymbol{U}\right)$.

Properties

- \boldsymbol{R} only depends on the class $[\boldsymbol{Q}]$ and $\boldsymbol{\sigma}$ (ZKPoK, identification).
- Defines an average-case LIP problem ac-LIP σ_{σ}^{S}.
- Given any representative we can sample at $\sigma \geq \mathbf{2}^{\Theta(n)} \cdot \boldsymbol{\lambda}_{\boldsymbol{n}}([\boldsymbol{S}])$ (\Longrightarrow worst-case to average-case reduction).

Actual hardness assumption

1. For a uniformly random $\boldsymbol{O} \in \mathcal{O}_{\boldsymbol{n}}(\mathbb{R})$, decoding in $\boldsymbol{O} \cdot \mathcal{L}_{\mathbf{0}}$ is hard.

Distinguishing LIP

$\Delta \operatorname{LIP}_{\sigma}^{Q_{0}, Q_{1}}$

Given two quadratic forms $\boldsymbol{Q}_{\mathbf{0}}, \boldsymbol{Q}_{\mathbf{1}} \in \mathcal{S}_{\boldsymbol{n}}^{>0}$, and $\boldsymbol{Q} \in \mathcal{D}_{\boldsymbol{\sigma}}\left(\left[\boldsymbol{Q}_{\boldsymbol{b}}\right]\right)$ for a uniform random $b \in\{0,1\}$, find b.

$$
\begin{aligned}
& \begin{array}{|ccccc}
\hline & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
& \bullet & \bullet & \bullet & \\
& & & & \\
\hline
\end{array} \\
& \mathcal{L}_{0} \\
& O \cdot \mathcal{L}_{b} \\
& \mathcal{L}_{1}
\end{aligned}
$$

Security Assumption [informal]

1. $\boldsymbol{O} \cdot \mathcal{L}_{0}$ is indistinguishable from a random lattice.
2. Decoding in a random lattice is hard.

Security Assumption [informal]

1. ..indistinguishable from some lattice with a dense sublattice. 2. Decoding in a random lattice is hard.

Arithmetic Invariants

- $\operatorname{det}(\boldsymbol{Q})$.
- $\operatorname{gcd}(\boldsymbol{Q}):=\operatorname{gcd}\left(\boldsymbol{Q}_{i j}\right)_{i, j}$
- $\operatorname{gcd}\left\{\|x\|_{Q}^{2}: x \in \mathbb{Z}^{n}\right\}$
- Self dual? (up to scaling)

Cryptanalysis - Invariants

Arithmetic Invariants

- $\operatorname{det}(\boldsymbol{Q})$.
- $\operatorname{gcd}(\boldsymbol{Q}):=\operatorname{gcd}\left(\boldsymbol{Q}_{i j}\right)_{i, j}$
- $\operatorname{gcd}\left\{\|x\|_{Q}^{2}: x \in \mathbb{Z}^{n}\right\}$
- Self dual? (up to scaling)
- Equivalence over $\boldsymbol{R} \supset \mathbb{Z}, \boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\boldsymbol{R}), \boldsymbol{R} \in\left\{\mathbb{R}, \mathbb{Q}, \forall \boldsymbol{p} \mathbb{Q}_{\boldsymbol{p}}, \forall \boldsymbol{p} \mathbb{Z}_{\boldsymbol{p}}\right\}$

Cryptanalysis - Invariants

Arithmetic Invariants

- $\operatorname{det}(\boldsymbol{Q})$.
- $\operatorname{gcd}(\boldsymbol{Q}):=\operatorname{gcd}\left(\boldsymbol{Q}_{i j}\right)_{i, j}$
- $\operatorname{gcd}\left\{\|x\|_{\boldsymbol{Q}}^{2}: x \in \mathbb{Z}^{n}\right\}$
- Self dual? (up to scaling)
- Equivalence over $\boldsymbol{R} \supset \mathbb{Z}, \boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\boldsymbol{R}), \boldsymbol{R} \in\left\{\mathbb{R}, \mathbb{Q}, \forall \boldsymbol{p} \mathbb{Q}_{\boldsymbol{p}}, \forall \boldsymbol{p} \mathbb{Z}_{\boldsymbol{p}}\right\}$

Definition (Conway Genus)

The Genus of $\boldsymbol{Q} \in \mathcal{S}_{\boldsymbol{n}}^{>0}(\mathbb{Z})$ represents the $\mathbb{Z}_{\boldsymbol{p}}$-equivalence classes $[\boldsymbol{Q}]_{\mathbb{Z}_{\boldsymbol{p}}}$ for $\boldsymbol{p}=2$ and all primes $\boldsymbol{p} \mid \operatorname{det}(\boldsymbol{Q})$.

Cryptanalysis - Invariants

Arithmetic Invariants

- $\operatorname{det}(\boldsymbol{Q})$.
- $\operatorname{gcd}(\boldsymbol{Q}):=\operatorname{gcd}\left(\boldsymbol{Q}_{i j}\right)_{i, j}$
- $\operatorname{gcd}\left\{\|x\|_{Q}^{2}: x \in \mathbb{Z}^{n}\right\}$
- Self dual? (up to scaling)
- Equivalence over $\boldsymbol{R} \supset \mathbb{Z}, \boldsymbol{U} \in \operatorname{GL}_{\boldsymbol{n}}(\boldsymbol{R}), \boldsymbol{R} \in\left\{\mathbb{R}, \mathbb{Q}, \forall \boldsymbol{p} \mathbb{Q}_{\boldsymbol{p}}, \forall \boldsymbol{p} \mathbb{Z}_{\boldsymbol{p}}\right\}$

Definition (Conway Genus)

The Genus of $\boldsymbol{Q} \in \mathcal{S}_{\boldsymbol{n}}^{>0}(\mathbb{Z})$ represents the $\mathbb{Z}_{\boldsymbol{p}}$-equivalence classes $[\boldsymbol{Q}]_{\mathbb{Z}_{\boldsymbol{p}}}$ for $\boldsymbol{p}=2$ and all primes $\boldsymbol{p} \mid \operatorname{det}(\boldsymbol{Q})$.

- Covers all above invariants, and is efficiently computable.

Cryptanalysis - Invariants

Arithmetic Invariants

- $\operatorname{det}(\boldsymbol{Q})$.
- $\operatorname{gcd}(\boldsymbol{Q}):=\operatorname{gcd}\left(\boldsymbol{Q}_{i j}\right)_{i, j}$
- $\operatorname{gcd}\left\{\|x\|_{Q}^{2}: x \in \mathbb{Z}^{n}\right\}$
- Self dual? (up to scaling)
- Equivalence over $\boldsymbol{R} \supset \mathbb{Z}, \boldsymbol{U} \in \mathrm{GL}_{\boldsymbol{n}}(\boldsymbol{R}), \boldsymbol{R} \in\left\{\mathbb{R}, \mathbb{Q}, \forall \boldsymbol{p} \mathbb{Q}_{\boldsymbol{p}}, \forall \boldsymbol{p} \mathbb{Z}_{\boldsymbol{p}}\right\}$

Definition (Conway Genus)

The Genus of $Q \in \mathcal{S}_{\boldsymbol{n}}^{>0}(\mathbb{Z})$ represents the $\mathbb{Z}_{\boldsymbol{p}}$-equivalence classes $[\boldsymbol{Q}]_{\mathbb{Z}_{\boldsymbol{p}}}$ for $\boldsymbol{p}=2$ and all primes $\boldsymbol{p} \mid \operatorname{det}(\boldsymbol{Q})$.

- Covers all above invariants, and is efficiently computable.

Genus attack

If $\operatorname{genus}\left(\boldsymbol{Q}_{\mathbf{0}}\right) \neq \operatorname{genus}\left(\boldsymbol{Q}_{\mathbf{1}}\right)$, then $\Delta \operatorname{LIP}^{Q_{0}, \boldsymbol{Q}_{1}}$ is easy.

Cryptanalysis - Geometry

- If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_{1}\left(Q_{0}\right) \neq \lambda_{1}\left(Q_{1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{\mathbf{0}}\right), \operatorname{gap}\left(\boldsymbol{Q}_{\mathbf{1}}\right)\right\}$.

Cryptanalysis - Geometry

- If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\lambda_{1}\left(Q_{0}\right) \neq \lambda_{1}\left(Q_{1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{\mathbf{0}}\right), \operatorname{gap}\left(\boldsymbol{Q}_{1}\right)\right\}$.

- Dual LIP: $\boldsymbol{Q}=\boldsymbol{U}^{t} \boldsymbol{Q}_{\boldsymbol{b}} \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-\mathbf{1}}=\boldsymbol{U}^{-\mathbf{1}} \boldsymbol{Q}_{\boldsymbol{b}}^{-\mathbf{1}} \boldsymbol{U}^{-t}$.

Cryptanalysis - Geometry

- If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\boldsymbol{\lambda}_{\mathbf{1}}\left(\boldsymbol{Q}_{0}\right) \neq \boldsymbol{\lambda}_{\mathbf{1}}\left(\boldsymbol{Q}_{1}\right)$, then $\Delta \operatorname{LIP}^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{\mathbf{0}}\right), \operatorname{gap}\left(\boldsymbol{Q}_{1}\right)\right\}$.

- Dual LIP: $\boldsymbol{Q}=\boldsymbol{U}^{t} \boldsymbol{Q}_{\boldsymbol{b}} \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-\mathbf{1}}=\boldsymbol{U}^{-1} \boldsymbol{Q}_{\boldsymbol{b}}^{-\mathbf{1}} \boldsymbol{U}^{-\boldsymbol{t}}$.

Dual SVP Attack

If $\lambda_{1}\left(Q_{0}^{-1}\right) \neq \lambda_{1}\left(Q_{1}^{-1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{0}^{-1}\right), \operatorname{gap}\left({\overline{Q_{1}}}^{-1}\right)\right\}$.

Cryptanalysis - Geometry

- If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\boldsymbol{\lambda}_{1}\left(\boldsymbol{Q}_{0}\right) \neq \boldsymbol{\lambda}_{\mathbf{1}}\left(\boldsymbol{Q}_{1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{\mathbf{0}}\right), \operatorname{gap}\left(\boldsymbol{Q}_{1}\right)\right\}$.

- Dual LIP: $\boldsymbol{Q}=\boldsymbol{U}^{t} \boldsymbol{Q}_{\boldsymbol{b}} \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-\mathbf{1}}=\boldsymbol{U}^{-1} \boldsymbol{Q}_{\boldsymbol{b}}^{-\mathbf{1}} \boldsymbol{U}^{-\boldsymbol{t}}$.

Dual SVP Attack

If $\lambda_{1}\left(Q_{0}^{-1}\right) \neq \lambda_{1}\left(Q_{1}^{-1}\right)$, then $\Delta \operatorname{LIP}^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{0}^{-1}\right), \operatorname{gap}\left({\overline{Q_{1}}}^{-1}\right)\right\}$.

- Dense sublattice attack? (overstretched NTRU)

Cryptanalysis - Geometry

- If the genera match, we have to distinguish by geometric invariants.

SVP Attack

If $\boldsymbol{\lambda}_{1}\left(\boldsymbol{Q}_{0}\right) \neq \boldsymbol{\lambda}_{\mathbf{1}}\left(\boldsymbol{Q}_{1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{0}\right), \operatorname{gap}\left(\boldsymbol{Q}_{1}\right)\right\}$.

- Dual LIP: $\boldsymbol{Q}=\boldsymbol{U}^{t} \boldsymbol{Q}_{\boldsymbol{b}} \boldsymbol{U} \Leftrightarrow \boldsymbol{Q}^{-\mathbf{1}}=\boldsymbol{U}^{-1} \boldsymbol{Q}_{\boldsymbol{b}}^{-\mathbf{1}} \boldsymbol{U}^{-\boldsymbol{t}}$.

Dual SVP Attack

If $\lambda_{1}\left(Q_{0}^{-1}\right) \neq \lambda_{1}\left(Q_{1}^{-1}\right)$, then Δ LIP $^{Q_{0}, Q_{1}} \leq$ SVP, with Minkowski $\operatorname{Gap} \max \left\{\operatorname{gap}\left(\boldsymbol{Q}_{0}^{-1}\right), \operatorname{gap}\left(\boldsymbol{Q}_{1}^{-1}\right)\right\}$.

- Dense sublattice attack? (overstretched NTRU)

Open Question

Are there better attacks when the genera match?

Instantiating (simple)

Theorem [informal]

Let \mathcal{L}_{0} be a decodable lattice, and let \mathcal{L}_{1} be a lattice with a dense sublattice, then our scheme is CPA-secure if $\triangle L_{P} P^{Q_{0}, Q_{1}}$ is hard.

Instantiating (simple)

Theorem [informal]

Let \mathcal{L}_{0} be a decodable lattice, and let \mathcal{L}_{1} be a lattice with a dense sublattice, then our scheme is CPA-secure if $\triangle \operatorname{LIP} Q_{0}, Q_{1}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n} / 2}$ be a ρ-decodable lattice with integral gram matrix.
- For some $\boldsymbol{g} \in \mathbb{Z}_{\geq 1}$ we define

$$
\mathcal{L}_{0}:=\mathbf{g} \mathcal{L} \oplus(\mathbf{g}+\mathbf{1}) \mathcal{L} \quad \& \quad \mathcal{L}_{1}:=\mathcal{L} \oplus \mathbf{g}(\mathbf{g}+\mathbf{1}) \mathcal{L}
$$

Instantiating (simple)

Theorem [informal]

Let \mathcal{L}_{0} be a decodable lattice, and let \mathcal{L}_{1} be a lattice with a dense sublattice, then our scheme is CPA-secure if $\triangle \operatorname{LIP} Q_{0}, Q_{1}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n} / 2}$ be a ρ-decodable lattice with integral gram matrix.
- For some $\boldsymbol{g} \in \mathbb{Z}_{\geq 1}$ we define

$$
\mathcal{L}_{0}:=\boldsymbol{g} \mathcal{L} \oplus(g+1) \mathcal{L} \quad \& \quad \mathcal{L}_{1}:=\mathcal{L} \oplus \mathbf{g}(\mathbf{g}+\mathbf{1}) \mathcal{L}
$$

- Dense sublattice $\mathcal{L} \subset \mathcal{L}_{1}$ (set $\boldsymbol{g}=\Theta\left(\operatorname{gap}\left(\mathcal{L}^{*}\right) \cdot \operatorname{gap}(\mathcal{L}, \boldsymbol{\rho})\right)$).

Instantiating (simple)

Theorem [informal]

Let \mathcal{L}_{0} be a decodable lattice, and let \mathcal{L}_{1} be a lattice with a dense sublattice, then our scheme is CPA-secure if $\Delta \operatorname{LIP}^{Q_{0}, Q_{1}}$ is hard.

- Let $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n} / 2}$ be a ρ-decodable lattice with integral gram matrix.
- For some $\boldsymbol{g} \in \mathbb{Z}_{\geq 1}$ we define

$$
\mathcal{L}_{0}:=\boldsymbol{g} \mathcal{L} \oplus(g+1) \mathcal{L} \quad \& \quad \mathcal{L}_{1}:=\mathcal{L} \oplus \mathbf{g}(\mathbf{g}+\mathbf{1}) \mathcal{L}
$$

- Dense sublattice $\mathcal{L} \subset \mathcal{L}_{1}$ (set $\boldsymbol{g}=\Theta\left(\operatorname{gap}\left(\mathcal{L}^{*}\right) \cdot \operatorname{gap}(\mathcal{L}, \boldsymbol{\rho})\right)$).

Cryptanalysis

Invariants: $\operatorname{genus}\left(\mathcal{L}_{0}\right)=\operatorname{genus}\left(\mathcal{L}_{\mathbf{1}}\right)$.
SVP: if $\operatorname{gap}(\mathcal{L}) \leq \boldsymbol{f}, \operatorname{gap}\left(\mathcal{L}^{*}\right) \leq \boldsymbol{f}^{*}$ and $\operatorname{gap}(\mathcal{L}, \boldsymbol{\rho}) \leq \boldsymbol{f}^{\prime}$, then

$$
\max \left\{\operatorname{gap}\left(\mathcal{L}_{0}\right), \operatorname{gap}\left(\mathcal{L}_{0}^{*}\right), \operatorname{gap}\left(\mathcal{L}_{1}\right), \operatorname{gap}\left(\mathcal{L}_{1}^{*}\right)\right\} \leq \boldsymbol{O}\left(\max \left(\boldsymbol{f}, \boldsymbol{f}^{*}\right) \cdot \boldsymbol{f}^{*} \cdot \boldsymbol{f}^{\prime}\right)
$$

Decodable Lattices

Lattice	$\boldsymbol{f}:=\operatorname{gap}(\mathcal{L})$	$\boldsymbol{f}^{*}:=\operatorname{gap}\left(\mathcal{L}^{*}\right)$	$\boldsymbol{f}^{\prime}:=\operatorname{gap}(\boldsymbol{L}, \boldsymbol{\rho})$
$\mathbb{Z}^{\boldsymbol{n}}$	$\Theta(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\boldsymbol{n}})$
'Random' Lattice	$\Theta(\mathbf{1})$	$\Theta(\mathbf{1})$	$2^{\Theta(\boldsymbol{n})}$
NTRU, LWE, \cdots	$\Theta(\mathbf{1})$	$\Theta(\mathbf{1})$	$\Omega(\sqrt{\boldsymbol{n}})$
Prime Lattice	$\Theta(\log \boldsymbol{n})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\log \boldsymbol{n})$ [CR88, DP19]
Barnes-Sloane	$\Theta(\sqrt{\log \boldsymbol{n}})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\log \boldsymbol{n}})$ [MP20]
Reed-Solomon	$\Theta(\sqrt{\log \boldsymbol{n}})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\log \boldsymbol{n}})$ [BP22]
Barnes-Wall	$\Theta(\sqrt[4]{\boldsymbol{n}})$	$\Theta(\sqrt[4]{\boldsymbol{n}})$	$\Theta(\sqrt[4]{\boldsymbol{n}})$ [MN08]

Decodable Lattices

Lattice	$\boldsymbol{f}:=\operatorname{gap}(\mathcal{L})$	$\boldsymbol{f}^{*}:=\operatorname{gap}\left(\mathcal{L}^{*}\right)$	$\boldsymbol{f}^{\prime}:=\operatorname{gap}(\mathcal{L}, \boldsymbol{\rho})$
$\mathbb{Z}^{\boldsymbol{n}}$	$\Theta(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\boldsymbol{n}})$
'Random' Lattice	$\Theta(\mathbf{1})$	$\Theta(\mathbf{1})$	$2^{\Theta(\boldsymbol{n})}$
NTRU, LWE, \cdots	$\Theta(\mathbf{1})$	$\Theta(\mathbf{1})$	$\Omega(\sqrt{\boldsymbol{n}})$
Prime Lattice	$\Theta(\log \boldsymbol{n})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\log \boldsymbol{n})$ [CR88, DP19]
Barnes-Sloane	$\Theta(\sqrt{\log \boldsymbol{n}})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\log \boldsymbol{n}})$ [MP20]
Reed-Solomon	$\Theta(\sqrt{\log \boldsymbol{n}})$	$\Omega(\sqrt{\boldsymbol{n}})$	$\Theta(\sqrt{\log \boldsymbol{n}})$ [BP22]
Barnes-Wall	$\Theta(\sqrt[4]{\boldsymbol{n}})$	$\Theta(\sqrt[4]{\boldsymbol{n}})$	$\Theta(\sqrt[4]{\boldsymbol{n}})[$ [MN08]

Open Question

Can we construct a decodable lattice with $\max \left\{\boldsymbol{f}, \boldsymbol{f}^{*}, \boldsymbol{f}^{\prime}\right\} \leq \operatorname{polylog}(\boldsymbol{n})$?

Future work

Remarkable Lattices

Can we construct a decodable lattice with $\max \left\{\boldsymbol{f}, \boldsymbol{f}^{*}, \boldsymbol{f}^{\prime}\right\} \leq \operatorname{polylog}(\boldsymbol{n})$?

LIP to \triangle LIP?

Can we reduce the search version of LIP to the distinguishing version? (for \mathbb{Z}^{n} we can [Szydlo03])

Genus Sampling

Can we sample 'random' $\left[\boldsymbol{Q}\right.$ '] such that $\operatorname{genus}\left(\boldsymbol{Q}^{\prime}\right)=\operatorname{genus}(\boldsymbol{Q})$. Is $[\boldsymbol{Q}$ '] expected to have a good geometry? Is decoding in $\left[\boldsymbol{Q}^{\prime}\right]$ hard?

Module-LIP

LIP is easy for some Ideal lattices [Gentry-Szydlo, Lenstra-Silverberg]. Is rank $\boldsymbol{k} \geq \mathbf{2}$ module-LIP secure?

Thank you! :)
 Full paper at eprint.iacr.org/2021/1332

