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2 | 20Lattice Equality

L(B1) = L(B2)

⇐⇒
∃U ∈ GLd (Z) : B1U = B2

• Linear algebra: U := B†1B2.
• What if we have many bases B1,B2, . . . ,Bm?
• O(m2) pairwise checks.
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3 | 20Hermite normal form
• B ∈ Zd ′×d of full column rank.

• H = HNF(B) is the unique basis of L(B) s.t.

• H is in column echelon form.
• Left of pivot: non-negative and strictly smaller than pivot.

• Example: 
5 0 0
5 6 0
0 0 1
4 3 0


• Polytime algorithm to compute HNF (using LLL to prevent coefficient blow-up).
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L(B1) = L(B2)

⇐⇒
HNF(B1) = HNF(B2)

• B 7→ HNF(B) is what we call a canonical function.
• HNF(BU) = HNF(B) for all U ∈ GLd (Z).
• Compute HNF(B1), . . . ,HNF(Bm).
• Only O(m) queries/insertions in a hash table.
• Variant can be used for left action: HNFL(UBt) = HNFL(Bt).
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4 | 20Graph Isomorphism

Graph G = (V = [n],E ⊂ V × V )
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Graph G ′ = (V = [n],E ′)
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• Graph Isomorphism: G ∼= G ′ ⇔ σ(E) = E ′ for some σ ∈ Symn.



4 | 20Graph Isomorphism

Graph G = (V = [n],E ⊂ V × V )

1 2

3

4

5

Graph G ′ = (V = [n],E ′)

2

1

3

4 5

• Graph equality: E = E ′.

• Graph Automorphisms: Stab(G) = {σ ∈ Sym|V | : σ(E) = E}.
σ(E) := {(σ(i), σ(j)) : (i , j) ∈ E}

• Graph Isomorphism: G ∼= G ′ ⇔ σ(E) = E ′ for some σ ∈ Symn.



4 | 20Graph Isomorphism

Graph G = (V = [n],E ⊂ V × V )

1 2

3

4

5

Graph G ′ = (V = [n],E ′)

2

1

3

4 5

• Graph equality: E = E ′.
• Graph Automorphisms: Stab(G) = {σ ∈ Sym|V | : σ(E) = E}.

σ(E) := {(σ(i), σ(j)) : (i , j) ∈ E}

• Graph Isomorphism: G ∼= G ′ ⇔ σ(E) = E ′ for some σ ∈ Symn.



4 | 20Graph Isomorphism

Graph G = (V = [n],E ⊂ V × V )

1 2

3

4

5

Graph G ′ = (V = [n],E ′)

3

5

2

1 4

• Graph Isomorphism: G ∼= G ′ ⇔ σ(E) = E ′ for some σ ∈ Symn.



5 | 20Canonical Graph Ordering
• Give a vertex ordering of the graph purely based on the graph structure.

• Example: vertex order that minimizes E under a lexicographic ordering.
• Permutation (relative to input) is unique up to Stab(G).
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6 | 20Complexity

• More generally for weighted complete graphs G with weights W = (wij )ij :

G ∼= G ′ ⇐⇒ ∃σ ∈ Symn : ∀i , j wσ(i)σ(j) = w ′ij

• Several canonical graph ordering implementations exist: nauty, bliss, traces.
• Practical Complexity: Most graphs up to thousands of vertices are no problem.
• Theoretical:

• L. Babai, Graph isomorphism in quasipolynomial time, 2015.
• exp(log(|V |)O(1)).
• Retracted in 2017 after H.A. Helfgott found a flaw in the proof.
• Almost immediately fixed, confirmed by H.A. Helfgott.
• L. Babai, Canonical form for graphs in quasipolynomial time, 2019.
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8 | 20Lattice Isomorphism

L(B1) ∼= L(B2)

⇐⇒
O · L(B1) = L(B2) for some O ∈ Od (R)

⇐⇒
O · B1 · U = B2 for some O ∈ Od (R),U ∈ GLd (Z)

• If either O or U is trivial: linear algebra.
• Use OtO = I to remove the orthonormal transformation.
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9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .

• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.

• Can we construct a canonical function Can : Sd
>0 → Sd

>0 such that



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that

(1) Can(A) ∼ A.

(2) A1 ∼ A2 ⇐⇒ Can(A1) = Can(A2).



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that

(1) Can(A) ∼ A.
(2) A1 ∼ A2 ⇐⇒ Can(A1) = Can(A2).



9 | 20Quadratic Forms
• The gram matrix A = BtB ∈ Sd

>0 induces a quadratic form:

A : x 7→ xtAx for x ∈ Zd

• Geometric information remains: 〈Bx,By〉 = xtAy .
• A1 is arithmetically equivalent (∼) to A2 if

UtA1U = A2 for some U ∈ GLd (Z).

• U above is unique up to Stab(A1) := {S ∈ GLd (Z) : StA1S = A1}.
• Can we construct a canonical function Can : Sd

>0 → Sd
>0 such that

(1) Can(A) ∼ A.
(2) Can(UtAU) = Can(A) for all U ∈ GLd (Z).



10 | 20Characteristic Vector Set

0



10 | 20Characteristic Vector Set

00



11 | 20Characteristic Vector Set
• V : A 7→ V(A) ⊂ Zd is a characteristic vector set function if

(1) V(A) generates Zd (as a Z-module).
(2) V(UtAU) = U−1V(A) for all U ∈ GLd (Z).
• Property (2) is satisfied e.g. by Min(A, λ) := {x ∈ Zn : xtAx ≤ λ}.
• Vms(A) := Min(A, λmin(A)) with λmin(A) minimal such that (1) is satisfied.
• Can be used as a proxy:

A1 = UtA2U for some U ∈ GLd (Z)
⇐⇒

U · V(A1) =︸︷︷︸
As a Set

V(A2) for some U ∈ GLd (Z)

• Used by W. Plesken and B. Souvignier (1997) to compute lattice automorphisms
and isomorphisms.
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12 | 20Permutation Game
• Suppose A1 = UtA2U.

• V(A1) = {v1, v2, . . . , vn}.
• V(A2) = UV(A1) = {w1 = Uv1, . . . ,wn = Uvn}.
• Under this ordering we necessarily have equal pairwise inner products:

v t
i A1vj = (Uvi )

tA2(Uvj ) = w t
i A2wj for all i , j

• v t
i A1vj = w t

i A2wj for all i , j is also sufficient for such a U to exist.
• V(A2) = {w1, . . . ,wn}.
• We want to find a permutation σ such that vi A1vj = wσ(i)A2wσ(j) for all i , j .
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13 | 20Back to Graph Isomorphism

G(V(A1))

1

2

3

4

5

weights wij = v t
i A1vj

G(V(A2))

1

2

3

4

5

weights w ′ij = w t
i A2wj

A1 ∼= A2

m

∃σ : ∀i , j v t
i A1vj = wσ(i)A2wσ(j)

m

G(V(A1)) ∼= G(V(A2))

• It becomes a graph isomorphism problem.

• Stab(Ai ) ∼= Stab(G(V(Ai )).
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14 | 20Canonical Matrix

• From the graph we obtain some canonical ordering of V(A) = {v1, . . . , vn}, say

v23 v16 v3 v7 ∈ Zd×n

• Unique up to some S ∈ Stab(A).
• Defines a matrix M(A) ∈ Stab(A) \ Zd×n with the (canonical) property:

M(UtAU) ≡ U−1M(A) ∈ Stab(UtAU) \ Zd×n

• Now we can apply HNF: A1 ∼ A2 ⇐⇒ HNFL(M(A1)) = HNFL(M(A2))
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15 | 20Canonical Form

• Let TA ∈ Stab(A) \ GLd (Z) be a transformation s.t.

M(A) ≡ TA · HNFL(M(A)).

• Note that Can(A) := T t
AATA is well defined.

• Note that TUtAU = U−1TA ∈ Stab(UtAU) \ GLd (Z).
• Then we have:

Can(UtAU) = T t
UtAU(U

tAU)TUtAU

= TAU−tUtAUU−1TA = T t
AATA = Can(A)
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16 | 20Theoretical Complexity

• Suppose A is defined over a computable subfield F ⊂ R.

• We define a characteristic set Vvor function such that:

• |Vvor(A)| ≤ O(2d ).
• Vvor(A) can be computed in 2O(d) arithmetical operations over F .

• Quasi-polytime canonical graph algorithm on a graph of size |Vvor(A)| ≤ 2O(d).
• We can compute Can(A) in

exp(log(|Vvor(A)|)O(1)) + 2O(d) ≤ exp(dO(1)),

arithmetical operations over F ⊂ R.
• For F = Q these operations are polynomially bounded in the input size of A.
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17 | 20Practical Complexity
• Efficient in practice.

• In the order of (milli)seconds up to dimension 20.

Time (s) #Vms
Type Samples n min avg max min avg max

Perfect 10 963 2–8 0.00041 0.0032 0.086 6 73.74 240
524 288 9 0.0039 0.00594 0.11 90 94.04 272

Random

100 10 0.0015 0.08 2.03 20 100.36 988
100 20 0.016 0.17 4.18 40 114.34 812
100 30 2.43 23.41 511.42 60 93.46 310
100 40 5.18 24.91 251.51 82 107.7 240

Catalogue 107 2-16 0.00018 2.12 36.71 4 630.47 4320

Table: Timings of our implementation
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18 | 20Applications

• Removing redundant forms in a large collection.

• Often a critical bottleneck in enumeration algorithms (Kneser’s method, Voronoi’s
algorithm).
• Enumeration of forms of bounded discriminant, or small (spinor) class number.

• Brandt–Intrau tables of reduced ternary forms with discriminant ≤ 1000
• Nipp’s tables of positive definite primitive quaternary forms with discriminant ≤ 1732.
• Complete table of lattices with class number 1 due to Kirschmer–Lorch

• Perfect form enumeration to solve the lattice packing theorem.

• Estimates are in the order of a billion perfect forms in dimension 9.
• Canonical form computed in an average of 6 milliseconds.

• Algebraic Modular Forms related to Kneser’s method.
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19 | 20Conclusions

• We show an explicit and deterministic algorithm for finding a canonical form for a
positive definite matrix under unimodular integral transformations.

• Based on Canonical Graph algorithms and Characteristic Vector sets.
• It is efficient in practice and has many applications.
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