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Abstract

In this paper, we report on the full classification of generic iso-edge subdivisions of

six-dimensional translational lattices. We obtain a complete list of 55 083 357 affine

types of iso-edge subdivisions. We report on computational techniques that were used

for this computer-assisted enumeration which are of general interest.

1. Introduction

The study of the Voronoi and Delaunay polytopes of lattices was initiated in (Lejeune Dirich-

let, 1850; Voronoi, 1908) and the Voronoi polytope of a lattice is an extremely useful

object in crystallography under the name of the Wigner–Seitz Cell and Brillouin zone.

When the lattice changes the Voronoi and Delaunay polytopes change but in a given

dimension there are only a finite number of nonequivalent possibilities, each defining

a domain in the space of lattices. Following Voronoi, those domains are named L-type

domains. A domain is called generic if it has the maximal possible dimension.
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The state of the art of the enumeration of Voronoi polytopes of lattices is reported

in Table 3 of (Dutour Sikirić et al., 2016), where the enumeration of all the possible

types of Voronoi polytopes in dimension 5 is done. A related enumeration problem

is to consider only the edges of the Delaunay polytopes or equivalently the facets of

the Voronoi polytopes. This was initiated in (Baranovskii & Ryshkov, 1973; Ryškov &

Baranovskĭı, 1978) and rediscovered in (Engel, 2015). A description of the theory was

presented in (Dutour Sikirić & Kummer, 2022) together with applications to algebraic

geometry and the Conway-Sloane conjecture. We call those domains iso-edge domains

though the name C-type is commonly used1. Again a domain is called generic if it

has the maximal possible dimension.

In this work, we enumerate the generic iso-edge domains in dimension six. The

enumeration is relatively difficult and forces us to introduce new computational tech-

niques that are of general interest. It also opens the way for further computations for

example of Voronoi polytopes in dimension six. Another related open problem is to

prove that the Vallentin lattice (Schürmann & Vallentin, 2006; Vallentin, 2003) gives

the best lattice covering in dimension six. See Table 1 for the enumeration results

known so far.

Table 1. Number of generic and all combinatorial types, respectively, of iso-edge domain

corresponding GLd(Z)-inequivalent cones.

n Generic types All combinatorial types
2 1 2
3 1 (Fedorov, 1885) 5 (Fedorov, 1885)
4 3 (Engel, 2015) 51 (Stogrin, 1975)
5 76 (Ryškov & Baranovskĭı, 1978) 56 713 (Dutour Sikirić & Kummer, 2022)

(Engel, 2015)
6 55 083 357 (This work)

In Section 2 we start with some notation and background on Delaunay polytopes and

on the Gram matrix formalism which is helpful. In Section 3 we give some information

1The terminology “C-type” comes from “L-type” introduced by Voronoi. The Cyrillic letter C is
pronounced like the Latin letter S and refers to “skeleton”, that is the graph determined by the edges
of the Delaunay subdivision.
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on the methods used to do the effective computer enumeration. In Section 4 we report

on the obtained enumeration results.

2. Definitions

For a lattice L in the Euclidean space Rd Voronoi introduced a polytopal decomposi-

tion induced by the closest neighbor points:

PV (L) =
{
x ∈ Rd s.t. ∥x∥ ≤ ∥x− v∥ for v ∈ L− {0}

}
.

This polytope is now named the Voronoi polytope and it shows up in many differ-

ent applications in crystallography under the names of Wigner–Seitz Cell and Bril-

louin zone (Okabe et al., 2000). Voronoi polytopes are also important in computa-

tional geometry (Aurenhammer et al., 2013) and higher dimensional constructions

(Schürmann, 2009).

For a lattice L a sphere S(c, r) of center c and radius r is called an emphy sphere if

for all lattice vectors v ∈ L we have ∥v − c∥ ≥ r. A Delaunay polytope of a lattice L

is the polytope whose vertex set is S(c, r) ∩ L for an empty sphere S(c, r).

Fig. 1. Example of a Voronoi Cell (red) and Delaunay polytopes (blue and green).
The centrally symmetric Delaunay polytopes are indicated in blue. The hexagonal
lattice (right) is generic and the integer lattice (left) is not generic.
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2.1. Working with Gram matrices

The set of positive definite quadratic forms is denoted by Sd
>0. When dealing with

lattices up to orthogonal transformations, it is often convenient to work with Gram

matrices Q = B⊤B instead of using matrices of lattice bases B. Up to orthogonal

transformations, the basis B can be uniquely recovered from the Gram matrix. Every

positive definite symmetric matrix defines a corresponding positive definite quadratic

form x 7→ Q[x] := x⊤Qx on Rd.

The Gram matrix is an easier and more practical system to work with but the prob-

lem is that there are many possible lattice bases of a given lattice. Any two lattice

basis B1 and B2 of the same lattice are related by an integral matrix U of determi-

nant ±1, i.e., an unimodular matrix, such that B2 = B1U and so the corresponding

positive definite matrices satisfy Q2 = U⊤Q1U . We call such positive definite matrices

(arithmetically) equivalent.

Fig. 2. Same as Figure 1 but in the Gram setting with (up to scaling) Q = ( 1 0
0 1 ) and

( 2 1
1 2 ) respectively.

2.2. Iso-Delaunay and iso-edge domains

Let A ∈ Sd
>0 be a positive definite quadratic form on Rd. We formulate the notion

of Delaunay polytopes in terms of A in the following way: a lattice polytope P ⊂ Rd

is called a Delaunay polytope if there is some c ∈ Rd and r > 0 such that A[x− c] ≥ r
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for all x ∈ Zd with equality if and only if x is a vertex of P . The set Del(A) of all

Delaunay polytopes is the Delaunay subdivision associated to A. The iso-Delaunay

domain ∆(D) of a Delaunay subdivision D is

∆(D) := {Q ∈ Sd
>0 : Del(Q) = D},

also known as an L-type domain. The iso-Delaunay domain ∆(A) of A ∈ Sd
>0 is

defined to be ∆(Del(A)). Voronoi’s second reduction theory (Voronoi, 1908) states

that the set of all iso-Delaunay domains is a polyhedral subdivision of the cone Sd
>0

of positive definite symmetric matrices on which the group GLd(Z) of unimodular

matrices acts on the right by A ◦U = U⊤AU . See (Schürmann, 2009) for an overview

of such decompositions. For any fixed d this group action on the set of all iso-Delaunay

domains has only finitely many orbits.

The iso-edge domain, introduced in (Ryškov & Baranovskĭı, 1978) is a coarser sub-

division of Sd
>0: The iso-edge domain of a Delaunay subdivision D is defined as

C(D) =

{
Q ∈ Sd

>0 : E ∈ Del(Q) for all E ∈ D
with E centrally symmetric

}
.

We call the iso-edge domains of maximal dimension generic. In this generic case, the

only centrally symmetric Delaunay polytopes are the edges justifying the name. The

iso-edge domain C(A) of A ∈ Sd
>0 is defined to be C(Del(A)).

Quadratic forms in an iso-edge domain have exactly 2n − 1 translation classes of

edges. If one chooses the representatives [0, vi] for 1 ≤ i ≤ 2n − 1 for the translation

classes then the defining inequalities for the domain are of the form

Q

[
vi
2

]
≤ Q

[
vi
2
− v

]
for v ∈ Zd.

Those inequalities are linear in the quadratic form Q. It was proven in (Baranovskii &

Ryshkov, 1973) that only a finite number of inequalities suffices and that the generic

iso-edge domains are polyhedral.
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It was shown in (Ryškov & Baranovskĭı, 1978) that the set of all iso-edge domains

is a polyhedral subdivision of Sd
>0 and that there are finitely many iso-edge domains

up to GLd(Z)-equivalence.

In (Ryškov & Baranovskĭı, 1978) the iso-edge domains of dimension 5 were enumer-

ated resulting in 76 different types. Then the iso-Delaunay domains were enumerated

(the enumeration was unfortunately wrong in term of missing one case and was cor-

rected later in (Engel, 2000; Engel & Grishukhin, 2002)). Finally, the lattice covering

problem was solved in dimension 5 with A∗
5 giving the thinnest covering (This conclu-

sion was confirmed in (Schürmann & Vallentin, 2006)). The classification of iso-edge

domains in dimension 5 was confirmed in (Engel, 2015).

3. Algorithms

The enumeration of the generic iso-edge domains is done in the following standard

way. We start from one iso-edge domain and compute its facets. From each facet,

we compute the adjacent iso-edge domain. We check if this new iso-edge domain is

isomorphic to an already known one and if not we insert it into the list of iso-edge

domains. The enumeration terminates when all domains have been treated.

3.1. Canonical form of iso-edge domains

Determining whether two iso-edge domains are isomorphic may be fast but if we

have say M = 107 cases, then the number of pairwise equivalence tests is M(M−1)/2,

which is not computationally feasible. One speed-up is to compute some invariants for

the iso-edge domain. But an even better approach is to compute a canonical form of

the C-type. The isomorphism test then becomes a simple equality test that has an

amortized constant cost since it uses a hash-map.

Such a canonical form for graphs is a common construction in graph computations
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(McKay & Piperno, 2014). It allows to obtain a canonical ordering of the vertices that

transform isomorphism checks into a string equality check. It is used in combinatorics

for enumerating purposes (McKay, 1998).

One key aspect of the enumeration is that we can compute a canonical form of an

iso-edge domain. We encode an iso-edge domain by the family of facet-defining vectors

of the corresponding Voronoi polytope V = (vi)1≤i≤N ⊂ Zd, i.e. the set of Voronoi

relevant vectors of any form in the domain. For a generic iso-edge domain, there are

precisely N = 2 · (2d − 1) such vectors. We follow the approach of (Dutour Sikirić

et al., 2020) for the canonical form of quadratic forms which we adapt to our case. We

compute the matrix Q =
∑

1≤i≤N viv
⊤
i and define the edge weighted graph GV on the

N vectors with edge weights wij = v⊤i Q
−1vj . We then compute the canonical form

of this graph (see (McKay & Piperno, 2014)) which allows us to define a canonical

ordering of the vectors V. Once the ordering is canonical we can use a Hermite normal

form computation to obtain a unique representation V ′ = (v′i)1≤i≤N of the iso-edge

domain.

In the case of positive definite quadratic forms, we use a configuration of short

vectors which span Zd over the integers. In the following lemma, we prove that the

Voronoi relevant vectors (vi)1≤i≤N generate Zd, and that they transform well under the

action of GLd(Z). This allows us to apply the whole methodology of (Dutour Sikirić

et al., 2020) to our case and prove that the family V ′ = (v′i)1≤i≤N is indeed a canonical

form for the vectors V = (vi)1≤i≤N .

Lemma 3.1 Consider the map A 7→ V(A) ⊂ Zd that sends a positive definite form

A ∈ Sd
>0 to its set of Voronoi-relevant vectors. Then for all A ∈ Sd

>0

• V(A) spans Zd as a Z-module, and

• for all U ∈ GLd(Z) we have V(UAU⊤) = U−1V(A).
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Proof. For the form A define the Voronoi polytope as follows

VA =
{
x ∈ Rd s.t. A[x] ≤ A[x− v] for x ∈ Zd

}
.

The family of polytopes (v+ VA)v∈Zd realize a tiling of Rd. As a consequence for each

vector v ∈ Zd there exists a path of Voronoi polytopes {h1 + VA, . . . , hk + VA} such

that h1 = 0, hk = v and the polytopes hi + VA and hi+1 + VA share a facet. As a

consequence hi+1 − hi is a relevant vector and v is an integer sum of Voronoi relevant

vectors. This shows that V(A) spans the lattice. The second part corresponds simply

to a basis transformation. 2

This algorithm can be sped up in several ways. First, we can use the program

Traces for computing the canonical form of a graph (See (McKay & Piperno, 2014)

for a presentation of the algorithm of traces). Second when reducing an edge-weighted

graph to a classical graph that Traces can process, we can use an edge reduction

technique (see last paragraph of the section “Isomorphism of edge-coloured graphs” of

the user manual of (McKay, 2014)). The third optimization is more subtle and uses the

fact that the facet vectors of the graph occur in pairs {v,−v}. Therefore we can write

the vectors as (v1, v2, . . . , v2p) with p = N/2 and v2i = −v2i−1. We consider an edge

weighted graph Gabs,V on the p pairs with edge weight
∣∣∣v⊤2iQ−1v2j

∣∣∣. This smaller edge

weighted graph is easier to work with and as we shall see as powerful an invariant as

the full graph. If every automorphism of Gabs,V can be extended to an automorphism

of GV then the canonical form of Gabs,V will give a canonical form of GV . If the

graph formed by the non-zero weights is connected then an automorphism of Gabs,V

admits at most two extensions to an automorphism of GV . Lemma 3.2 below proves

the connectedness. For a more extensive explanation of this trick see Section 9.7.2 of

(van Woerden, 2023). With all these reductions the running time for computing the

canonical form in dimension 6 is 3 milliseconds per iso-edge domain.
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Lemma 3.2 [Connectedness] For a generic iso-edge domain the edge-weighted graphs

GV and Gabs,V , when removing all weight 0 edges, are connected.

Proof. It suffices to prove the lemma for Gabs,V . Consider a generic iso-edge domain

with vectors S = {±v1, . . . ,±vN} for N = 2d− 1, and let Q =
∑

i viv
⊤
i . Note that due

to Lemma 3.1 Q has full rank and is positive definite. Suppose for contradiction that

Gabs,V is not connected, then there exists two sets Si = {±vi1, . . . ,±viki} for i = 1, 2

such that S = S1 ∪ S2, S1 ∩ S2 = ∅, N = |S| = |S1|+ |S2| and such that x⊤Q−1y = 0

for all x ∈ S1, y ∈ S2. Because Q−1 is positive definite the orthogonality implies that

rk(S1)+ rk(S2) ≤ d. Consider the rank rk(Si) lattice Li = spanZ(Si) ⊂ Zd w.r.t. some

form R in the interior of the iso-edge domain. By definition Si is contained in the

set of Voronoi relevant vectors Li, and thus |Si| ≤ 2rk(Si) − 1. This gives however the

following contradiction:

N = |S| = |S1|+ |S2| ≤ (2rk(S1) − 1) + (2rk(S2) − 1) < 2d − 1 = N.

2

3.2. Parallelization of the enumeration

We can express the canonical form as a string and thus compute its hash. The hash

function that we use does not have to be cryptographically secure and so we use Robin

Hood Hash (Celis et al., 1985) which is a fast hashing function adequate for database

purposes.

The parallelization strategy chosen is Message Passing Interface (MPI) in which P

processes are run simultaneously. No data is shared between the processes but data

is exchanged using synchronization primitives. For each iso-edge domain, we compute

its canonical form expression. We then compute the hash which we reduce modulo P .

This allows us to assign an iso-edge domain to a specific process.
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Then on each process, we have an associative container that uses the same hash

function but with a different seed in order to store the iso-edge domains. If we were

to use the same seed, then the obtained hash on a given node would be in a much

smaller set and so the number of collisions would be higher. Using the hash function

allows to have very good performance on insertion, essentially O(1). It turns out that

the hashes are distinct on all the iso-edge domains that we considered in this work

though the algorithms used do not depend on this property.

3.3. Finding adjacent iso-edge domains

From an iso-edge domain having vectors {v1, . . . , vN} we compute the triples (i, j, k)

with vi + vj + vk = 0. From each such triple we get a number of defining inequalities

Q[vi] ≤ Q[vj ] +Q[vk], Q[vj ] ≤ Q[vi] +Q[vk], Q[vk] ≤ Q[vi] +Q[vj ].

From all such inequalities, we can determine which ones are facet-defining inequal-

ities. We use Clarkson’s method (Clarkson, 1994) implemented in cdd (see (Fukuda,

2022; Fukuda et al., 2018)) in order to get the facet-defining inequalities. The problem

is that the number of inequalities is large with a minimum of 903. This is fairly high

and gives a runtime of 0.2 seconds per form which is too high.

Note that while using the symmetries of the iso-edge domain could in theory lead

to a smaller number of cases to consider, in practice 98% of cones have trivial auto-

morphism group so this relatively expensive computation would actually increase the

runtime.

Instead, we use an additional criterion to exclude some inequalities from consider-

ation more efficiently. Let C ⊂ Zd be the set of facet vectors v encoding an iso-edge

domain. In other words it defines the edges conv(0, v) of the Delaunay subdivision

Del(Q) of a positive definite matrix Q.
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A 3-homogeneous hypergraph HC is defined as follows:

V (HC) := Zd/2Zd,

E(HC) :=
{{x̄, ȳ, z̄} : x, y, z ∈ C, x+ y + z = 0

}
.

Here for every t ∈ Zd we write t̄ to denote the parity class t+ 2Zd (∈ Zd/2Zd).

Let {i, j, k} ∈ E(HC). There are two ways to choose {x, y, z} ⊆ C so that x̄ = i,

ȳ = j, z̄ = k and x+ y + z = 0. Let us write {x, y, z} for one of the two choices, then

the other choice would be {−x,−y,−z}. Define a set C′ ⊂ Zd by requiring that the

following properties are fulfilled:

C \ C′ = {z,−z}, C′ \ C = {x− y, y − x}.

If C′ is the set of facet vectors of an iso-edge domain, then we say that C′ is obtained

from C by swap (i, j; k). This corresponds precisely with flipping to the neighboring

iso-edge domain at the defining inequality Q[z] ≤ Q[x]+Q[y], as Q[x−y] ≤ Q[x]+Q[y]

and x+ y + z = 0 implies that Q[z] ≥ Q[x] +Q[y]. Note that in the signature of the

swap i and j are interchangeable and k is fixed to be the last argument. Note also

that the definition of a swap through parity classes is consistent: we obtain the same

swap if {x, y, z} and {−x,−y,−z} are interchanged.

For the set of facet vectors of an iso-edge domain C and a triple {i, j, k} ∈ E(HC)

we will say that (i, j; k) is a forbidden swap for an iso-edge domain C if there is no

iso-edge domain C′ such that C′ is obtained from C by a swap (i, j; k).
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Fig. 3. The unfolded facets of a truncated octahedron. The edges (x,−z, y) between
two hexagonal facets with a quadrangular in the middle indicate a triple that sat-
isfies x+ y + z = 0 as in (the proof of) Theorem 3.3.

Theorem 3.3 Let C ⊂ Zd be the set of facet vectors of an iso-edge domain. If the

inclusion {{i, j, k}, {i, e, f}, {i, g, h}, {j, e, g}, {j, f, h}} ⊆ E(HC)

holds for seven pairwise distinct non-zero parity classes

e, f, g, h, i, j, k ∈ Zd/2Zd,

then (i, k; j) and (k, j; i) are forbidden swaps for C.

Proof. Choose seven lattice vectors t, u, v, w, x, y and z from C so that their parity

classes are e, f , g, h, i, j and k, respectively. (Thus, there are exactly two choices for

each vector; these two choices relate to each other via antipodality.)

We first prove that

t, u, v, w, x, y, z ∈ span(t, x, y). (1)

We note that t, x, y ∈ span(t, x, y) for trivial reasons. Since {i, j, k} ∈ E(HC), one

concludes that z ∈ span(x, y). Similarly, u ∈ span(t, x) and v ∈ span(t, y) because
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{i, e, f} ∈ E(HC) and {j, e, g} ∈ E(HC), respectively. Therefore, u, v, z ∈ span(t, x, y).

Finally, w ∈ span(x, v) because {i, g, h} ∈ E(HC). Hence w ∈ span(t, x, y) and (1)

indeed holds.

Further, (1) implies that a Voronoi parallelohedron P , whose set of facet vectors

is C, contains 7 pairs of antipodal facet vectors in at most 3-dimensional subspace

span(t, x, y). This is only possible if dim span(t, x, y) = 3, and if

C3 := {±t,±u,±v,±w,±x,±y,±z}

is the set of all 14 minimal vectors of the 3-dimensional lattice Zd ∩ span(t, x, y). One

can view C3 as the set of facet vectors of a 3-dimensional iso-edge domain. We remem-

ber that a generic 3-dimensional iso-edge domain can have only one combinatorial

type — that of a truncated octahedron.

Let F 2
x , F

2
y and F 2

z be facets of P 3 whose facet vectors are x, y and z respectively.

F 2
x , F

2
y are hexagons because facet vectors of quadrangular faces participate only in 2

triples, while x and y participate in 3 triples. Therefore F 2
z is quadrangular because

each triple contains exactly one facet vector corresponding to a quadrangular face.

For the final step of the proof let x+y+z = 0. This can be achieved by interchang-

ing x with −x and y with −y if necessary. Generality is not restricted because the

preceding argument does not use any specific choice of signs for facet vectors. We will

argue by contradiction, assuming, for instance, that the swap (j, k; i) is admissible. If

C′ is the iso-edge domain obtained by the swap, then

C̃3 := C ′ ∩ span(t, x, y) = {±t,±u,±v,±w,±(y − z),±y,±z}

is also a 3-dimensional iso-edge domain, which can be obtained by a swap from C3. A

quick computation shows however that a 3-dimensional generic iso-edge domain has

only 6 facet defining inequalities and thus 6 possible swaps. For all those swaps both

F 2
y and F 2

z are hexagonal facets of P 3, which is not the case as proved earlier. This
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contradiction shows that the swap (j, k; i) is forbidden. For similar reasons, the swap

(k, i; j) is also forbidden. 2

The above theorem provides an efficient way to restrict the possible swaps. For

each triple {i, j, k} we iterate over the vectors e that are in C. The conditions of the

theorem defines the edges f , g and h uniquely if they exist. When they exist, we can

forbid some swaps. The cost of this combinatorial check is negligible. This reduces the

number of swaps that we have to consider considerably and allow to reduce the runtime

of determine the non-redundant facets of the iso-edge domains from an average of 200

milliseconds down to 2 milliseconds per iso-edge domain.

4. Results

The complete runtime of the enumeration was one week on a 20 processors cluster.

The complete results are available at (van Woerden & Dutour Sikiric, 2024).

We report on a few interesting statistics of the 6-dimension iso-edge domains. The

total number of triples has a minimum of 1806, a maximum of 2286 and an average of

1887.3. The total number of inequalities generated by those triples has a minimum of

903, a maximum of 1143 and an average of 943.65. After application of Theorem 3.3,

we obtain that the minimum number of inequalities is 21, the maximum is 576 and

an average of 117.78. The total number of facets has a minimum of 21, a maximum of

216 and an average of 31.87. In Table 2 we give the complete statistics on the number

of facets of the iso-edge domains. In Table 3 we give the statistics on the number of

automorphisms of the iso-edge domains.

For the set of facet vectors C of an iso-edge domain a vector v is free if for each

triple T = {x, y, z} ⊂ C with x+ y + z = 0 there exist w ∈ T such that v · w = 0. An

iso-edge domain has finitely many free vectors up to scalar multiples and it has at most

n(n+1)/2. The notion of free vectors is useful for decomposing Voronoi polytopes as
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the Minkowski sum of a polytope and a segment. This notion of geometrical interest

has been studied in several papers, see (Grishukhin, 2006a; Dutour Sikirić et al., 2014;

Grishukhin, 2004; Grishukhin, 2006b; Engel, 1998) for more details. In Table 4 we give

the statistics on the number of free vectors of the iso-edge domains.

The enumeration shows that the iso-edge domain containing the lattice E∗
6 is the

only one that does not have any free vector. It was discovered in (Engel, 1998) that this

polytope has no free vector. In (Grishukhin, 2006a) it was also proved that the lattices

D+
2m for m ≥ 4 have no free vectors. This implies that all the generic iso-edge domains

that contain them have no free vectors. In (Vallentin, 2003) some record coverings

in dimension 6 were obtained by doing random walks in the space of iso-Delaunay

tessellations. Such random walks can be done as well in the space of iso-edge domains

with the goal of minimizing the number of free vectors. By using this technique, we

found 225, 455, 135, 55 generic iso-edge domains with no free vectors in dimension 7,

8, 9 and 10, which gives a partial view of the landscape. All such domains were not

arithmetically equivalent which indicates that the number of generic iso-edge domains

in those dimensions is likely to be extremely large.

Denote by s the number of free vectors of an iso-edge domain. In (Engel, 2020) the

number of 6-dimensional cones with s = 0, 1, 2, 3, 18, 19, 20, 21 were determined and

the number coincides with the one we found. This provides a rigorous proof of the

enumeration results. This enumeration is based on the enumeration of classes with

s = 0 and 21 in (Engel, 2019) and computing the adjacent iso-edge domains. The

enumeration for s = 0 in (Engel, 2019) in Section 5 is based on the enumeration of

iso-Delaunay domains in (Baburin & Engel, 2013). However, since that enumeration

is partial we have to consider the proof to be incomplete.
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Table 2. Statistics on the number of facets f of C-types in dimension 6.

f nb f nb f nb f nb
21 355238 46 313466 71 437 96 9
22 899234 47 242243 72 360 97 7
23 1404333 48 186431 73 257 98 6
24 1974025 49 140903 74 185 99 7
25 2557561 50 107168 75 170 100 1
26 3045565 51 81364 76 140 101 1
27 3443444 52 60849 77 112 102 3
28 3716426 53 45894 78 102 103 4
29 3864881 54 34159 79 79 104 1
30 3865747 55 25589 80 62 105 2
31 3768043 56 19233 81 60 107 1
32 3583995 57 14345 82 59 108 2
33 3333454 58 10928 83 41 109 1
34 3035303 59 8003 84 32 111 1
35 2709025 60 6098 85 22 112 2
36 2373969 61 4609 86 27 113 2
37 2051781 62 3608 87 22 114 1
38 1745716 63 2901 88 18 125 1
39 1467512 64 2053 89 15 129 2
40 1213321 65 1557 90 15 134 1
41 993280 66 1256 91 3 138 1
42 805593 67 987 92 11 166 1
43 644637 68 805 93 7 216 1
44 511780 69 593 94 3
45 401635 70 515 95 5

Table 3. Statistics on number h of automorphisms of C-types in dimension 6.

h nb h nb h nb h nb
2 54319176 20 12 48 52 288 2
4 746925 24 462 72 4 480 4
6 49 28 1 96 19 10080 1
8 14200 32 33 120 1 103680 1
12 1999 36 1 144 1
16 402 40 6 240 6
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Table 4. Statistics on the number s of free vectors of C-types in dimension 6.

s nb s nb s nb s nb
0 1 6 184516 12 3600928 18 15
1 1 7 1351883 13 687446 19 3
2 6 8 6208175 14 81468 20 1
3 58 9 14706130 15 7622 21 1
4 1025 10 17467981 16 739
5 16321 11 10768946 17 91
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