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Abstract. Until recently lattice reduction attacks on NTRU lattices
were thought to behave similar as on (ring-)LWE lattices with the same
parameters. However several works (Albrecht-Bai-Ducas 2016, Kirchner-
Fouque 2017) showed a significant gap for large moduli q, the so-called
overstretched regime of NTRU.
With the NTRU scheme being a finalist to the NIST PQC competition
it is important to understand —both asymptotically and concretely—
where the fatigue point lies exactly, i.e. at which q the overstretched
regime begins. Unfortunately the analysis by Kirchner and Fouque is
based on an impossibility argument, which only results in an asymptotic
upper bound on the fatigue point. It also does not really explain how
lattice reduction actually recovers secret-key information.
We propose a new analysis that asymptotically improves on that of
Kirchner and Fouque, narrowing down the fatigue point for ternary
NTRU from q ď n2.783`op1q to q “ n2.484`op1q, and finally explaining
the mechanism behind this phenomenon. We push this analysis further
to a concrete one, settling the fatigue point at q « 0.004 ¨ n2.484, and
allowing precise hardness predictions in the overstretched regime. These
predictions are backed by extensive experiments.

1 Introduction

1.1 Context

One should certainly recognize that in the field of lattice-based cryptography
the NTRU cryptosystem of Hoffstein, Pipher and Silverman [HPS98, CDH`20]
was particularly ahead of its time. After two decades spent basing cryptogra-
phy [Ajt99, Reg05, SSTX09] on the worst-case hardness of lattice problems and
concretising this theory into practical cryptosystems for standardisation [PAA`19,
SAB`20, DKR`20], it is quite remarkable to see these constructions landing not
so far away from the original design of NTRU (q-ary lattices, module structure
over similar polynomial rings). In fact, it was even discovered a posteriori, that,
up to the choice of parameters, the NTRU scheme itself can also be supported
by worst-case hardness [SS11].

Regarding cryptanalysis, it was only recently discovered that the security
of NTRU is in fact more subtle than the problem of finding a single unusually
short vector in a lattice. The first dent in this status quo came in 2016, from
two concurrent works work of Albrecht et al, and Cheon et al. [ABD16, CJL16],
which exploits the specific algebraic structure of the NTRU lattice to improve



upon pure lattice reduction attacks1. This approach was shown to be applicable
when the modulus q is large enough (say, super-polynomial), a regime coined
“overstretched”.

Shortly thereafter Kirchner and Fouque [KF17] showed that this improved
complexity does not require any algebraic structure, and is instead rooted in
the purely geometrical fact that the NTRU lattice contains an unusually dense
sublattice of large dimension, i.e. a sublattice of small determinant.2 They also
go further in their analysis, and conclude that moduli q as small as n2.783`op1q
already belong to the overstretched regime —for random ternary secrets. In
particular, for q larger than this bound, the security of NTRU is significantly
less than that of Learning With Errors [Reg04] and of its Ring variant [SSTX09,
LPR13] using similar parameters.3

However, it is not so clear from the analysis of Kirchner and Fouque whether
this asymptotic quantity n2.783`op1q is an estimate or merely an upper bound
on the fatigue point, that is the value of q separating the standard regime from
the overstretched regime. Their analysis is based on a lemma of Pataki and
Tural [PT08], that constraints the shape of lattice basis in terms of the volume
of their sublattices. While it allows to conclude that the dense sublattice must
be discovered after reducing the lattice basis beyond these constraints, it does
not really explain how lattice reduction ends up discovering the dense sublattice,
nor does it exclude that the discovery could happen earlier.

So far, it has been generally considered that only advanced schemes —
requiring very large q— such as NTRU-based Homomorphic Encryption [BLLN13]
or candidate cryptographic multi-linear maps [GGH13] could be affected by this
overstretched regime. Yet, because the analysis of Kirchner and Fouque is only
asymptotic, and because it may only provide an upper bound on the fatigue
point, there is at the moment little documented evidence that the overstretched
regime may not in fact extend further down, maybe down to the NTRU encryp-
tion scheme itself [HPS98, CDH`20]! Admittedly, this seems like a far fetched
concern: asymptotically this scheme chooses q “ Opnq, with a hidden constant
between 4 and 5 in practice. However, this scheme being now a finalist of the
NIST standardisation process for post-quantum cryptography, it appears rather
imperious to refine our understanding of the phenomenon, and to finally close
this pending question.

We found further motivation to go down this rabbit hole by measuring the
concrete value of fatigue point experimentally. Until now, all documented ex-
periments on the overstretched regime [ABD16, KF17, LW20] have focused on
rather large values of q, and only used weak lattice reduction (LLL [LLL82],
BKZ with blocksize 20): their goal was to demonstrate the claimed general be-

1 Though the idea had been inconclusively considered already in 2002 by Gentry,
Jonsson, Nguyen Stern and Szydlo as reported in [GS02, Sec. 6].

2 Note that one may associate a short vector to a dense sublattice of dimension 1.
3 In fact, the presence of n rotations of the secret key already implies a minor secu-
rity degradation compared to (Ring)-LWE already in the standard regime [MS01,
DDGR20].
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Fig. 1. Progressive BKZ with 8 tours per blocksize on matrix NTRU instances with
parameters n “ 127, σ2

“ 2
3
for several moduli q. Left: the first blocksize β at which

Progressive BKZ detects the Secret Key Recovery (SKRκ) or Dense Sublattice Discov-
ery pDSDκ) event. We did 10 runs per modulus q. For the 2016-estimates, we use the
geometric series assumption (GSA) for the shape of the basis and a probabilistic model
for the discovery of the secret vector (see Section 2.4). Right: the positions κ at which
a secret key or dense sublattice vector are detected over 80 runs per modulus.

haviour when parameters are far in the overstretched regime. On the contrary,
we focus our attention to the fatigue point for this preliminary experiment. That
is, we ran strong reduction (progressive-BKZ [Sch87, AWHT16] up to blocksize
60) until a vector related to the secret key appeared for a range of moduli q. We
distinguished the standard regime from the overstretched regime by classifying
according to which event occurs first

– Secret Key Recovery (SKRκ): a vector as short as a secret key vector is
inserted in the basis at any given position κ.

– Dense Sublattice Discovery (DSDκ): a vector strictly longer than the secret
key but belonging to the dense sublattice generated by the secret key is
inserted in the basis at any given position κ.

The result (Fig. 1) is rather striking: for n “ 127, we start seeing a deviation
from the standard regime for q as small as 700, while a naive interpretation of
the prediction by Kirchner and Fouque [KF17] would suggest a fatigue point at
q « n2.783 « 700 000. We can conclude either that the asymptotic bound is not
tight, or that the hidden asymptotic term (the op1q in n2.783`op1q) is significantly
negative in practice. In any case, the bound of Kirchner and Fouque does not
seem to provide accurate concrete predictions.

Remark. At this point, we should clarify why the DSD event should essentially
be considered a successful attack. First, for q not too much larger than the fatigue
point, an SKR event typically quickly follows after the DSD event; what happens
is that DSD events cascade, until the full dense sublattice has been extracted:
the first half of the reduced basis precisely generates the dense sublattice. Lattice
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reduction will happen independently on each half of the basis, meaning that the
dimension of the search space for the secret key has effectively been halved, and
therefore making the problem much easier.

However, as q increases, DSD becomes easier and easier, to the point that
it becomes even easier than secret key recovery within the dense sublattice. In
other terms, there is a superstretched regime for larger q, where DSD does not
directly lead to SKR.

Nevertheless, we argue —essentially rephrasing [ABD16]— that the DSD
event is typically sufficient for an attack. First, the dense sublattice vector discov-
ered is of length significantly lower than q; in an FHE scheme such as [BLLN13]
it is sufficient to decrypt fresh ciphertexts.4 Secondly, in the case of cyclotomic
or circulant NTRU, it is possible to recover the secret key from the dense sub-
lattice by other means than pure lattice reduction; in particular the recent line
of work on the principal ideal-SVP [EHKS14, CDPR16, BEF`17] showed that
this can be done classically in sub-exponential time exppÕp

?
nqq and quantumly

in polynomial time.

1.2 Our work

Having identified precisely what event distinguishes the standard regime of
NTRU from its overstretched regime, we may now proceed to a refined anal-
ysis, and determine precisely both the fatigue point and the precise cost5 of
attacks in the overstretched regime. Our refined analysis diverges from the one
of Kirchner and Fouque [KF17] on the following points:

1. we exploit the fact that BKZ runs SVP on large blocks pβ ě 2q not only to
deduce the shape of the basis, but also to actually discover dense sublattice
vectors,

2. we do not solely focus on the behaviour at position κ “ n ´ β ` 1 out of
d “ 2n dimensions, but instead predict the most relevant position,

3. we propose an average-case analysis of volumes of the relevant lattices and
sublattices, leading to a concrete prediction rather than a worst-case bound,

4. we also validate our intermediate and final predictions quantitatively with
extensive experiments.

We note that contributions 1 and 2 alone already give us an important asymp-
totic result: the fatigue point of NTRU is indeed lower than predicted by Kirchner
and Fouque, namely, it should happen at q “ n2.484`op1q instead of n2.783`op1q.

Furthermore, our concrete average case analysis also differentiates the cir-
culant version of NTRU [HPS98] from its matrix version [CG05, GGH`19]. We
note minor deviations in the concrete analysis of volumes of relevant sublattices,

4 The secret key being shorter is only required to deal with ciphertexts obtained by
homomorphic computation.

5 In this work, we only measure cost of lattice reduction in terms of the required BKZ
blocksize; the computational cost of BKZ is essentially an orthogonal question.
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that on average slightly favours the attacker in the matrix case, but also shows
a larger variance in the concrete hardness of the circulant case.

In summary: we achieve an explicative and predictive model for the fatigue
of NTRU, with concrete predictions confirmed in practice. In particular, the
fatigue point is estimated to be at q « 0.004 ¨ n2.484 for n ą 100. All our
artefacts for experiments and predictions are open-source and can be accessed
at https://github.com/WvanWoerden/NTRUFatigue. These are based on the
FPLLL and FPyLLL libraries [dt21a, dt21b].

Impact. We wish to clarify that this work does not contradict the concrete secu-
rity of the NTRU candidate to the NIST competition [CDH`20]; on the contrary,
we close a pending question regarding a potential vulnerability.

Limitation: the Lucky-Lifts. During our experiments, we also noted rare occur-
rence of DSD events that qualitatively differ from what we expected. Namely, the
vector from the dense sublattice was found at positions κ quite larger than what
was predicted by our model, as shown in Fig. 7 (a). More remarkable, these vec-
tors were extremely unbalanced: their 2n ´ κ last (Gram-Schmidt) coordinates
were much smaller than the κ first coordinates (Fig. 7 (b)). We call these DSD
events lucky-lifts (DSD-LL), while the one we model and mostly observe are
called after the Pataki-Tural Lemma (DSD-PT). Despite those two phenomena
being very distinct, they nevertheless occured for the same BKZ blocksizes β, at
least in the range of parameters we could experiment with.

It could very well be that these rare DSD-LL events are just artefacts of the
modest parameters of our experiments and that these events vanish as the dimen-
sion grows. Yet, as they seem of a very different nature, a definitive conclusion
would require a dedicated study.

1.3 Organisation

We introduce some preliminaries, the NTRU lattice, and the state-of-the-art
estimates in Section 2. In Section 3 we introduce our new DSD-PT estimate and
give an asymptotic analysis. In Section 4 we give an average-case analysis to
construct a concrete estimator. In the final Section 5 we compare our estimate
with experiments.
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2 Preliminaries

2.1 Notation and distributions

All vectors and matrices are denoted by bold lower and upper case letters re-
spectively. All vectors are column-vectors and we write B “ rb0, . . . ,bn´1s

for a matrix where the i-th column vector is bi. If a matrix B P Rdˆn has
full rank n we denote by LpBq :“ tBx : x P Znu the lattice spanned by the
columns of B. We call a lattice vector v P L primitive if it is not a strict inte-
ger multiple of another lattice vector. For a basis B and i P t0, . . . , d ´ 1u we
define πi as the orthogonal projection away from b0, . . . ,bi´1, and the Gram-
Schmidt vectors as b˚0, . . . ,b

˚
d´1 where b˚i :“ πipbiq. We write Brl:rq for the

matrix rπlpblq, . . . , πlpbr´1qs, and denote the projected6 sublattice LpBrl:rqq as
Lrl:rq when the basis is clear from the context. We denote the Euclidean norm
of a vector v by ‖v‖ and the volume of a lattice by volpLpBqq :“ śn´1

i“0 ‖b˚i‖.
We write λ1pLq :“ min

vPLzt0u
‖v‖ for the first minimum of a lattice L. For a lattice

L we denote the dual lattice as L˚ :“ tw P spanpLq : xw,vy P Z for all v P Lu.
We use ‘claim’ to refer to an informal statement based on heuristics.

We denote the continuous centered Gaussian (normal) distribution with vari-
ance σ2 by χσ2 . We denote the unit sphere over k coordinates as Sk´1 and call
the uniform distribution over Sk´1 the spherical distribution. We write Bd1 for the
d-dimensional unit ball. We write the chi-square distribution with k degrees of
freedom as χ2

k,σ2 :“
řk
i“1X

2
i , where X1, . . . , Xk are independently distributed

as χσ2 . The chi-square distribution has expectation kσ2, but for our concrete
estimates we consider the log-expectation.

Lemma 2.1. Let X be distributed as χ2
k,σ2 , then

E rln pXqs “ lnp2σ2q ` ψpk{2q,

where ψpxq :“ Γ 1pxq{Γ pxq is the digamma function.

2.2 NTRU and lattice attacks

We start with the historical definition of NTRU.

Definition 2.2 (NTRU). Let n be prime, q a positive integer and let f , g P
pZ{qZqrXs be polynomials of degree n with small coefficients sampled from some
distribution χ under the condition that f is invertible in Rq :“ pZ{qZqrXs{pXn´

1q. The pair pf , gq forms the secret key, and the public key is defined as h :“
g{f mod Rq. The NTRU problem is to recover any rotation pXif , Xigq of the
secret key from h.

For NTRUencrypt [HPS98, CDH`20] f and g have ternary coefficients, with
a fixed number of about n{3 of each value in t´1, 0, 1u. For our analysis we
6 When l “ 0, no projection is applied, and Lr0:rq is simply a sublattice of L.
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consider the case where each coefficient is sampled from a discrete Gaussian
over Z with some variance σ2 ą 0. For simplicity the ternary case is treated as
a discrete Gaussian with variance σ2 “ 2

3 .
More generally we consider a matrix description of NTRU where the polyno-

mials are replaced by matrices F ,G,H P Znˆn such that H :“ G ¨ F´1 mod q
[CG05, GGH`19]. Variants of NTRU, e.g. based on different algebraic rings
[BBC`20], can be encoded in the structure of the matrices. For example, the
original problem can be encoded by setting Fi,j :“ fpi`j mod nq where f “
řn´1
i“0 fiX

i, for each polynomial respectively. We call the original variant cir-
culant NTRU, based on the resulting shape of the matrices F ,G, and we treat
f , g as n-dimensional vectors. We also consider the variant, called matrix NTRU,
where the matrices F ,G have no extra structure and the coefficients are inde-
pendently sampled from a discrete Gaussian.

To reduce the NTRU problem to a lattice problem we define the NTRU
lattice, which contains a particularly dense sublattice generated by the secret
key.

Definition 2.3. Let pn, q,F ,G,Hq be an NTRU instance. We define the NTRU
lattice as

LH,q :“

ˆ

qIn H
0 In

˙

¨ Z2n,

and its (secret) dense sublattice of rank n by:

LGF :“ BGF ¨ Zn Ă LH,q,where BGF :“

ˆ

G
F

˙

.

Solving the NTRU problem is equivalent to recovering the dense sublattice
basis BGF “ rG;F s up to some permutation of the columns. For uniformity of
notation we will denote such a column by pg|fq. These column vectors have a
length of about ‖pg|fq‖ «

?
2nσ2, which for common parameters is much shorter

than the expected minimal length λ1pLH,qq «
a

nq{pπeq of the full lattice LH,q

for a truly uniform random H P pZ{qZqnˆn. To recover the secret key we thus
have to find these exceptionally short vectors in the full lattice LH,q.

In [CS97] Coppersmith and Shamir showed that we can slightly relax the
problem as any small vector from the dense sublattice LGF is enough to decode
a message. We therefore focus our analysis on the recovery of elements from
LGF , and not (directly) on the full secret basis BGF . To recover short vectors
we resort to lattice reduction.

2.3 Lattice Reduction

Any lattice L “ LpBq with basis B P Rdˆd has (for d ą 1) an infinite number of
other bases B ¨U with U P GLdpZq. The goal of lattice reduction is to find a good
basis: the basis vectors are preferably short and somewhat orthogonal. Looking
at the Gram-Schmidt vectors b˚0, . . . ,b

˚
d´1 we have the invariant

śd´1
i“0 ‖b˚i‖ “
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detpBq “ volpLq which is independent of the basis. Therefore decreasing the
length of the first basis vector b0 “ b˚0 forces some of the other Gram-Schmidt
vectors to increase in length. We call these lengths p‖b˚i‖qi“0,...,d´1 the profile of
a basis B. A good basis has a well balanced profile; in particular one that does
not decrease too fast.

The most famous lattice reduction algorithm is the polynomial time LLL
algorithm, which gives some guarantees on the slope of an LLL-reduced basis.
We consider a generalisation, namely the BKZ algorithm, that gives a flatter
slope, but at a higher cost. A basis is BKZ reduced with blocksize β if b˚κ is
a shortest vector of the projected sublattice Lrκ:minpκ`β,dqq at each position κ.
LLL-reduction corresponds to the case that β “ 2.

Definition 2.4 (BKZ). A basis B “ rb0, . . . ,bd´1s is called BKZ-β reduced if

‖b˚κ‖ “ λ1pLrκ:min pκ`β,dqqq for all κ “ 0, . . . , d´ 1.

A BKZ-reduced basis has several provable bounds on the slope of the profile. In
the context of cryptanalysis we are more interested in the average-case behaviour
and thus we fall back on heuristics to describe the shape of a BKZ-reduced
profile. The most commonly used heuristic for lattices is the Gaussian Heuristic,
that states that for a measurable volume V the number of lattice points |LX V|
approximately equals volpVq{ volpLq. Applying this to a ball allows to estimate
the first minimum of a lattice.

Heuristic 2.5 Let L be a d-dimensional lattice with volume volpLq. The expec-
tation of the first minimum λ1pLq under the Gaussian Heuristic is given by

ghpLq :“ volpLq1{d
volpB1q

1{d
«
a

d{p2πeq ¨ volpLq1{d.

We also denote ghpdq «
a

d{p2πeq for the expected first minimum of a d-
dimensional lattice with volume 1.

Applying the above heuristic to the value of ‖b˚κ‖ “ λ1pLrκ:min pκ`β,dqqq at each
position κ gives us relations between the Gram-Schmidt lengths ‖b˚0‖ , . . . ,

∥∥b˚d´1

∥∥.
Solving these relations for β ! d shows that ‖b˚κ‖ {

∥∥b˚κ`1

∥∥ « αβ for some con-
stant αβ only depending on β. So heuristically the profile forms a geometric
series. This is made more precise by the Geometric Series Assumption.

Heuristic 2.6 (Geometric Series Assumption (GSA)) Let B be a BKZ-β
reduced basis, then the profile satisfies

lnp‖b˚i‖q “
d´ 1´ 2i

2
¨ lnpαβq `

lnpdetpBqq

d
,

where αβ “ ghpβq2{pβ´1q.

The GSA is reasonably precise for say β ě 50 and a not too large blocksize β ! d
compared to the lattice dimension.
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The BKZ algorithm (see Algorithm 1) computes a BKZ-reduced basis from
any other basis. The algorithm greedily attempts to satisfy the BKZ condition at
each position by computing a shortest vector in each block Brκ:min pκ`β,dqq, and
replacing the basis vector bκ accordingly. This makes the basis BKZ-β reduced
at position κ, but might invalidate the condition at other positions. Applying
this once to all positions κ “ 0, . . . , d ´ 2 is called a tour. The BKZ algorithms
repeats such tours until the basis remains unchanged and is thus BKZ-reduced.
Algorithm 1: The BKZ algorithm.
Data: A lattice basis B, blocksize β.
while B is not BKZ-β reduced do

for κ “ 0, . . . , d´ 2 do // A single BKZ-β tour
wÐ a shortest vector in L

`

Brκ:min pκ`β,dqq

˘

;
Lift w to a full vector v P L

`

Br0:min pκ`β,dqq

˘

s.t. πκpvq “ w;
Insert v in B at position κ and use LLL to resolve linear
dependencies;

The number of tours is polynomially bounded, and in practice not much
improvement is attained after say a few dozen tours. The cost of BKZ is thus
mainly dominated by the exponential (in β) cost of finding a shortest vector
in a β-dimensional lattice. Progressive BKZ reduces this cost in practice, where
instead of running many tours of BKZ-β, one runs only a few tours for increasing
β1 “ 2, 3, . . . , β.

For our experiments we also added a hook to BKZ, using secret key infor-
mation, to detect if a vector v is part of the dense sublattice LGF and to abort
early if this is the case.

While the Geometric Series Assumption gives a good first order estimate
of the basis profile after BKZ-reduction, it is known to be inaccurate in small
dimensions or when the dimension is only a small multiple of the blocksize.
Additionally it does not account for the slower convergence when running pro-
gressive BKZ with only a few tours. To resolve this problem [CN11] introduced
a BKZ simulator based on the Gaussian Heuristic, that was later refined in
[YD17, BSW18]. These allow for accurate and efficient predictions of the profile
shape for random lattices, even for progressive BKZ with a limited number of
tours.

Behaviour on q-ary lattices. While by now the behaviour of BKZ on random
lattices is reasonably understood, this is less the case for q-ary lattices (for certain
parameters) such as the NTRU lattice LH,q.

Definition 2.7 (q-ary lattices). A lattice L of dimension d is said to be q-ary
if for some q ą 0 we have

qZd Ă L Ă Zd.

Note that the first n basis vectors of LH,q are orthogonal q-vectors pq, 0, . . . , 0q,
p0, q, 0, . . . , 0q, . . ., and so the initial basis profile starts with ‖b˚0‖ “ ¨ ¨ ¨ “
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∥∥b˚n´1

∥∥ “ q. Additionally after projecting away from these q-vectors, the re-
maining basis vectors are again orthogonal with length 1, and thus we have
‖b˚n‖ “ ¨ ¨ ¨ “

∥∥b˚d´1

∥∥ “ 1. Note that in the BKZ algorithm the length of b0 can
not increase, and is thus always at most q. Also b1 can not increase in length if
b0 remains unchanged, and so on. For dual-BKZ or the self-dual LLL the profile
lengths can not drop below 1 anywhere by the same reasoning. Still LLL and
BKZ guarantee that the profile slope in the middle is not too steep. So after LLL
reduction the profile must be flat at the start and end, and have a sloped part in
the middle, we call this a Z-shape. Because BKZ is not self-dual we do not have
any guarantee that the last profile elements do not drop below 1, however we
could for example run BKZ only on an appropriate middle context Lrn´m:n`mq

to force this behaviour. With this description one would expect the middle part
to follow the GSA, leading to an alternative heuristic for q-ary lattices.

Heuristic 2.8 (ZGSA) Let B be a basis of a 2n-dimensional q-ary lattice L
with n q-vectors. After BKZ-β reduction the profile has the following shape:

‖b˚i‖ “

$

’

&

’

%

q if i ď n´m,
?
q ¨ α

2n´1´2i
2

β , if n´m ă i ă n`m´ 1,
1, if i ě n`m´ 1,

where αβ “ ghpβq2{pβ´1q, and m “ 1
2 `

lnpqq
2 lnpαβq

.

Again this gives us a good first order estimate. Asymptotically setting β “ B ¨n
and q “ nQ, we obtain lnpαβq “

lnpnq
B¨n `O

`

n´1
˘

, and m “ 1
2QB ¨ n`O

´

n
lnpnq

¯

.

2.4 Estimates

The main question of our work is to better understand how BKZ recovers the
dense sublattice LGF from an NTRU lattice LH,q. Several works exist that
give estimates on the blocksize β for which BKZ successfully recovers the secret
key pg,fq, or more generally a vector from the dense sublattice. We discuss
the state-of-the-art estimates, one known as the 2016 Estimate [ADPS16] with
further refinements [DDGR20, PV21], and one by Kirchner and Fouque [KF17].

While the 2016 Estimate already gives a clear explanation how BKZ recovers
a suitable vector, the Kirchner and Fouque estimate is only based on an impos-
sibility result. To be more precise about what we mean with recovery we define
the following two events.

Definition 2.9 (BKZ Events). For a BKZ run on an NTRU lattice L with
dense sublattice LGF we define two events:

1. Secret Key Recovery (SKR): The first time one the secret keys pg|fq is
inserted.

2. Dense Sublattice Discovery (DSD): The first time a dense lattice vector
v P LGF strictly longer than the secret key(s) is inserted.

We further specify SKRκ and DSDκ when the insertion takes place at position
κ in the basis.
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2016 Estimate [ADPS16] for SKR. The 2016 Estimate is aimed at the more
general problem of detecting an unusually short vector in a lattice. To obtain an
estimate for the NTRU problem, and more specifically the SKR event, we apply
it to the unusually short vector pg|fq P LH,q.

Claim 2.10 (SKR – 2016 Estimate) Let L be a lattice of dimension d and
let v P L be a unusually short vector ‖v‖ ! ghpLq. Then under the Geometric
Series Assumption BKZ recovers v if

a

β{d ¨ ‖v‖ ă ?αβ2β´d´1
¨ volpLq1{d,

where αβ “ ghpβq2{pβ´1q.

The left hand side of the inequality is an estimate for ‖πd´βpvq‖, while the right
hand size is the expected norm of b˚d´β under the GSA. When the inequality is
satisfied we expect that the shortest vector in Lrd´β:dq is in fact (a projection
of) the unusually short vector, and thus it is inserted by BKZ at position d´ β.

For q-ary lattices we can easily change the estimate to make use of the ZGSA
instead, although for successful blocksizes b˚d´β will not lie on the flat tail-part,
and thus this will not change anything. Additionally for q-ary lattices it can
be beneficial to apply the estimate not to the full lattice but on some projected
sublattice Lri:dq for i ď n; the left hand side of the equation is expected to remain
unchanged, while the right hand side might decrease as volpLq loses a factor qi.
Note that we do not necessarily have to explicitly let BKZ act on this projected
sublattice, as BKZ already does this naturally.

Asymptotics. Consider the NTRU lattice LH,q and suppose that q “ ΘpnQq,
‖v‖ “ ‖pg,fq‖ “ ΘpnSq and β “ pB ` op1qqn. Applying the 2016 Estimate
the right hand side of the inequality is minimised when only keeping k “

min
`

p
?
2BQ´ 1qn, n

˘

of the q-vectors, so by applying the estimate to the pro-
jected sublattice LH,q

rn´k:2nq. For S ě 1 we have k “ n, and solving the equation
gives B “ 2

Q`2´2S . For S ă 1 we have k “ p
?
2BQ ´ 1qn, and solving gives

B “ 2Q
pQ`1´Sq2 . Note in particular that in terms of q we require a blocksize of

β “ Θ̃ pn{ lnpqqq.

Refinements. The 2016 Estimate gives a clear explanation on how and where the
secret vector is recovered. This also allows to further refine the estimate and give
concrete predictions. For example by using a BKZ-simulator instead of the GSA,
and by accounting for the probability that after the projection ‖πd´βpvq‖ has
been found, it is successfully lifted to the full vector v. Also instead of working
with the expected length of the projection, we can directly model the probability
distribution under the assumption that v is distributed as a Gaussian vector.
Such refinements were applied in [DDGR20, PV21], and the resulting concrete
predictions match with experiments to recover an unusually short vector. In this
work, we use the (Z)GSA for the basis shape, but adjusting the slope to account
for the speed of convergence using experimentally determined values. However,
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we do use the advanced probabilistic model for the detection and lifting of the
short vector.

For NTRU there is not just a single unusually short vector, but there are
n “ d{2 of them, which makes it more likely that at least one of them is recov-
ered. Because the refined concrete estimator already works with a probability
distribution, we can easily take multiple vectors into account. The resulting pre-
dictions for the SKR event match the experiments reasonably well for smallish
q as can be seen in Figure 1. For large q, the so-called overstretched regime, the
estimate is however too pessimistic.

Kirchner–Fouque Estimate [KF17] for DSD. In 2016 Albrecht, Bai and
Ducas [ABD16] showed that for very large values of q one can mount an alge-
braic subfield attack on the cyclotomic NTRU problem with sub-exponential or
even polynomial complexity. This allowed them to break several homomorphic
encryption schemes that relied on NTRU in the overstretched regime.

However soon after, Kirchner–Fouque [KF17] showed that this elaborate al-
gebraic attack was unnecessary: (dual-)BKZ already behaves much better in
this regime than the 2016 Estimate predicts, leading to the same asymptotic
improvements. The key idea behind their analysis is that in the overstretched
regime the NTRU lattice LH,q contains an exceptionally dense sublattice LGF of
low volume. This gives a constraint on the basis profile via the following lemma
by Pataki and Tural.

Lemma 2.11 (Pataki and Tural [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1. For any k-dimensional sublattice L1 Ă L we have

volpL1q ě min
J

ź

jPJ

∥∥b˚j∥∥ ,
where J ranges over the k-size subsets of t0, . . . , d´ 1u.

Applying Lemma 2.11 to the n-dimensional sublattice LGF Ă LH,q, and assum-
ing a non-increasing profile, we obtain an upper bound on the volume of LH,q

rn:2nq.
Assuming the ZGSA the latter volume increases when running BKZ-β for in-
creasing blocksizes, eventually contradicting the upper bound. This allows us to
detect if a q-ary lattice is in fact an NTRU lattice, but additionally Kirchner–
Fouque argue that BKZ must somehow have detected the dense sublattice after
this point. Based on this impossibility argument they introduced the following
estimate.

Claim 2.12 (DSD – Kirchner–Fouque Estimate) Let LH,q be an NTRU
lattice of dimension 2n, with dense sublattice LGF Ă LH,q. Under the Z-shape
Geometric Series Assumption BKZ-β triggers the DSD event if

volpLGF q ă q
m´1

2 ¨ α
´ 1

2 pm´1q2

β ,

where αβ “ ghpβq2{pβ´1q, and m “ 1
2 `

lnpqq
2 lnpαβq

.
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To apply this estimate we can bound volpLGF q using the Hadamard inequality
by ‖pg|fq‖n. As a first approximation this is reasonably tight because the secret
basis BGF is close to orthogonal.

Asymptotics. Consider the NTRU lattice LH,q and suppose that q “ ΘpnQq,
‖pg,fq‖ “ ΘpnSq and β “ pB`op1qqn. We apply the Kirchner–Fouque Estimate
using that m « BQ

2 n and αβ « pBnq1{pBnq.The left hand side of the inequality is

bounded by nnS`opnq and the right hand side equals n
BQ2

8 n`opnq; solving gives
B ě 8S

Q2 . Note that in terms of q we require a blocksize of β “ Θ̃
`

n{ ln2pqq
˘

,
improving upon the 2016 Estimate by a factor lnpqq. So for large enough q the
Kirchner–Fouque Estimate predicts a lower successful blocksize than the 2016
Estimate. We call the value of q for which BKZ starts to behave better than
predicted by the 2016 Estimate the fatigue point. For the common situation
that S “ 1

2 , e.g. when each secret coefficient has standard deviation σ “ Θp1q,
the Kirchner–Fouque Estimate predicts that the fatigue point lies at some q ď
n2.783`op1q.

3 A new Estimate

3.1 Preliminary Experiments

Both the 2016 Estimate and the Kirchner–Fouque Estimate analyse an event
that leads to successful recovery of a vector of the dense NTRU sublattice. This
only gives an upper bound on the hardness; a different event leading to the
recovery might happen at a lower blocksize. Additionally the Kirchner–Fouque
Estimate is only based on an impossibility result and gives no explanation as to
how BKZ actually recovers a vector from the dense sublattice. In order to derive
a tight estimate we first run experiments to track down at which point a dense
sublattice vector is actually found during the BKZ tours, i.e. when the DSDκ
event is triggered and at what position. Then we model this event in order to
hopefully derive a tight estimate.

We run progressive BKZ on NTRU lattices LH,q for fixed parameters n “
127, σ2 “ 2

3 , and several moduli q. For each BKZ insertion at position κ we check
if the inserted vector belongs to the dense sublattice LGF , and thereby if the
SKRκ or DSDκ event takes place, after which we stop.

The results are shown in Figure 1. We take a closer look at the observed SKRκ
and DSDκ events and where they are triggered. We can group our observations
in three typical circumstances.

– SKR-2016. The SKRκ event is mostly triggered for small values of q, and
this mostly happens at the position κ “ 2n´β, so in the last block r2n´β :
2nq, or slightly earlier. This coincides exactly with the SKR2n´β event as
predicted by the 2016 Estimate [ADPS16, AGVW17].

– DSD-PT. The DSDκ event is mostly triggered at positions κ “ n ` k ´ β
for 0 ă k ! n. The inserted dense vector v is often significantly longer
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than the secret key but still shorter than the q-vectors. On closer inspection
the projected length ‖πn`k´βpvq‖ is close to the expected length

b

β
n`k ‖v‖

for all instances, more specifically the length of v is well balanced over the
Gram-Schmidt directions b˚0, . . . ,b

˚
n`k´1. We name these events after the

Pataki–Tural Lemma (DSD-PT).
– DSD-LL. For a few instances the DSDκ event is triggered at large positions
κ, up to 2n ´ β. The inserted dense vector v is again significantly longer
than the secret key, but it has an unexpectedly short projection πκpvq on
the BKZ block rκ : κ` βq. We call these events lucky-lifts (DSD-LL).

The DSD-LL event could potentially be explained by the relatively large amount
of shortish vectors in the close to orthogonal dense sublattice LGF compared to
what one would expect based on the Gaussian Heuristic. These many vectors
might compensate for the low probability event that: (1) such a long vector has
such a short projection, and (2) the projected vector is correctly lifted by Babai’s
nearest plane algorithm (thus a lucky lift). The DSD-LL event remains rare for
all parameters we used in our experiments, and the successful blocksizes do not
seem to deviate from the DSD-PT events. Although we think this circumstance
deserves further analysis we therefore base our estimate on the more common
DSD-PT event.

For the DSD-PT event the projected length ‖πn`k´βpvq‖ is close to
b

β
n`k ‖v‖,

and thus the inserted dense vector v must in fact be (close to) a shortest vector
of the intersected sublattice LH,q

r0:n`kq X LGF . If not, the shortest vector would
typically have an even smaller projection and would thus be inserted instead. For
ease of analysis we therefore assume that v is a shortest vector of LH,q

r0:n`kqXLGF .
In short our new estimate can be described as follows.

Claim 3.1 (DSD-PT estimate) A tour of BKZ-β triggers the DSD event if

πn`k´βpvq ă
∥∥b˚n`k´β∥∥ ,

where v is a shortest vector of LH,q
r0:q X LGF for some 0 ă k ď n.

3.2 Asymptotic analysis

We denote the intersected sublattice by LGF
Xr0:rq :“ LH,q

r0:rq X LGF . To directly
apply Claim 3.1 we are interested in the length of v, and thus the value of
λ1
`

LGF
Xr0:n`kq

˘

. We break down the analysis into several steps. In order to obtain
a bound on the first minimum we first compute a bound on the volume of the
intersection LGF

Xr0:n`kq in terms of the basis profile and the volume of LGF .
Together with the GSA and a simple bound for volpLGF q we can then apply
Minkowski’s bound on the first minimum. By optimising κ “ n ` k ´ β we
obtain our new asymptotic estimate.
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Intersection. To understand the behaviour of the volume of the intersected
lattice we first need a small technical Lemma.

Lemma 3.2 ([DDGR20]). Given a lattice L with volume volpLq, and a prim-
itive vector v with respect to L˚. Let vK denote the subspace orthogonal to v.
Then LX vK is a lattice with volume volpLX vKq “ ‖v‖ ¨ volpLq.
The following Lemma generalises the Pataki–Tural Lemma on which the estimate
of Kirchner–Fouque is based. More specifically the Pataki–Tural Lemma only
considers the case where the intersection is always trivial ps “ 0q.

Lemma 3.3 (Generalisation of [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1, and consider the sublattice Lr0:sq. For any n-dimensional
sublattice L1 Ă L we have

volpLr0:sq X L1q ď volpL1q ¨
˜

min
J

ź

jPJ

∥∥b˚j∥∥
¸´1

,

where k :“ dimpLr0:sq X L1q and J ranges over the pn ´ kq-size subsets of
ts, . . . , d´ 1u.

Proof. We write L1
Xr0:rq :“ Lr0:rq XL1. For j “ k, . . . , n we define sj P ts, . . . , du

as the maximal index such that dim
´

L1
Xr0:sjq

¯

“ j, i.e. we obtain the following
strict chain of sublattices:

L1Xr0:sq “ L1Xr0:skq Ĺ L1Xr0:sk`1q
Ĺ ¨ ¨ ¨ Ĺ L1Xr0:snq “ L1.

Fix j P tk, . . . , n´ 1u. Because the basis vectors b0, . . . ,bd´1 are linearly inde-
pendent we have that L1

Xr0:spj`1qq
“ L1

Xr0:sj`1q. This allows us to focus on the
volume decrease from index sj ` 1 to sj , for which we know that

L1Xr0:sjq “ L1Xr0:sj`1q X pb
˚
sj q
K,

where pb˚sj q
K denotes the subspace orthogonal to b˚sj . The corresponding dual

basis of b0, . . . ,bsj contains a dual vector d P L˚
r0:sj`1q of length

›

›b˚sj
›

›

´1 with
spanpdq “ spanpb˚sj q. Let π be the orthogonal projection onto span

`

L1
Xr0:sj`1q

˘

,

then πpdq P
`

L1
Xr0:sj`1q

˘˚. Let m P Zě1 be such that πpdq{m is primitive w.r.t.
`

L1
Xr0:sj`1q

˘˚, then by Lemma 3.2 we obtain:

vol
´

L1Xr0:sjq
¯

“ vol
´

L1Xr0:sj`1q

¯

¨ ‖πpdq{m‖ ď vol
´

L1Xr0:sj`1q

¯

¨

∥∥∥b˚sj∥∥∥´1

.

We conclude the proof by chaining the above inequality for j “ k, . . . , n´ 1. [\

Before recovering a dense lattice vector we heuristically assume that there is no
special relation between the current lattice basis and the dense sublattice. More
specific we can consider that the span of b0, . . . ,bn´1 and that of LGF behave
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like random n-dimensional subspaces, and thus they have a trivial intersection
with high probability in the 2n-dimensional space. As a direct result we have
that dim

´

LGF
Xr0:n`kq

¯

“ k for k “ 0, . . . , n. Applying this to Lemma 3.3 we
obtain the following corollary.

Corollary 3.4. Let LH,q be an NTRU lattice with dense sublattice LGF of di-
mension n, if dim

´

LGF
Xr0:n`kq

¯

“ k for some k ě 0, then

vol
´

LGF
Xr0:n`kq

¯

ď vol
`

LGF
˘

¨

˜

d´1
ź

j“n`k

∥∥b˚j∥∥
¸´1

.

Note that Corollary 3.4 already shows that the new estimate can not be worse
than the Kirchner–Fouque Estimate. Namely if the Kirchner–Fouque Estimate
is triggered, then for intersection dimension k “ 1 the right hand side is smaller
than ‖b˚n‖. Assuming a non-decreasing profile we then have λ1

`

LGF
Xr0:n`1q

˘

“

vol
`

LGF
Xr0:n`1q

˘

ď ‖b˚n‖ ď
›

›b˚n`1´β

›

›, which implies that BKZ-β would find a
dense sublattice vector in this block (or earlier).

Volume dense sublattice. To use Corollary 3.4 we also need to bound the
volume of the dense sublattice LGF . Because the secret basis is close to orthog-
onal the Hadamard Inequality volpLGF q ď ‖pg|fq‖n is sufficient as a first order
approximation.

Conclusion. To obtain a heuristic asymptotic estimate we will assume that
before finding a dense lattice vector the basis follows the ZGSA shape.

Claim 3.5 The BKZ algorithm with blocksize β “ Bn applied to an NTRU
instance with parameters q “ ΘpnQq, ‖pg|fq‖ “ OpnSq triggers the DSD event
if

B “ 8S
Q2 ` 1

` op1q.

Justification. By the Hadamard Inequality we have lnpvolpLGF qq ď Sn lnpnq `
Opnq. Let k :“ Kn ą 0. Heuristically we expect that dimpLH,q

r0:n`kq X LGF q “ k,
and thus by Corollary 3.4 and by assuming the ZGSA we obtain a bound on the
volume of the intersected sublattice:

lnpvolpLH,q
r0:n`kq X LGF qq ď Sn lnpnq ´ 1

2

n`m´1
ÿ

i“n`k

ˆ

Q`
2n´ 1´ 2i

Bn

˙

lnpnq `Opnq

“ Sn lnpnq ´ pBQ´ 2Kq2
8B n ln pnq `Opnq
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By Minkowski’s bound we bound the first minimum using the above volume

lnpλ1pLH,q
r0:n`kq X LGF qq ď

1

2
lnpKnq `

lnpvolpLH,q
r0:n`kq X LGF qq

Kn `Op1q

ď

ˆ

´
pBQ´ 2Kq2

8BK `
S
K `

1

2

˙

ln pnq `Op1q.

After projecting onto the block rn` k ´ β : n` kq the above short vector does
not increase in length.7 BKZ detects the projected dense lattice vector in this
block if the length is less than

›

›b˚n`k´β
›

› “
`

1
2Q ` B´K

B
˘

lnpnq ` Op1q. Solving
for B shows that this is the case when

B ě 2
a

p2S ´Kq2 `K2Q2 ` 2p2S ´Kq
Q2

.

When K “ 4S
Q2`1 the right hand side is minimised and we obtain that BKZ

detects the projected dense lattice vector when B ě 8S
Q2`1 , which concludes

the claim. This routine computation can be verified symbolically via our sage
notebook claim3_5.ipynb. 4

Our new estimate gives an asymptotic improvement over the Kirchner–Fouque
Estimate ( 8SQ2 ). Asymptotically the optimal position is at κ “ n`k´β « n´ 1

2β.
Interestingly, if we do not optimize k and only consider k “ Op1q we obtain the
same asymptotic estimate as Kirchner–Fouque, which again emphasizes that we
generalised their analysis.

For the fatigue point we compare the relative blocksize of 8S
Q2`1 to that of

the 2016 Estimate given by 2Q
pQ`1´Sq2 for S ă 1 and by 2

Q`2´2S for S ě 1. For
ternary secrets (S “ 1

2 ) this narrows down the fatigue point from q ď n2.783`op1q

to q “ n2.484`op1q compared to the Kirchner–Fouque Estimate. This is still far
above the (sub)linear parameters used for NTRU encryption schemes, and thus
asymptotically we can close the pending question if these parameters fall in the
weaker overstretched regime or not. In practice however we do observe fatigue
points that are significantly lower than the naive value of q “ n2.484, which
motivates a concrete analysis with concrete predictions.

4 Concrete Analysis

In this section we consider a concrete analysis of our new DSD-PT estimate,
based on simple heuristics, to better predict the behaviour in practice, and to
show that our analysis matches experiments and is thus likely to be tight. The
first order asymptotics shown in Section 3.2 will remain unchanged, but the
differences are significant for practical parameters. Again we split the analysis

7 One may also be concerned that the short vector would collapse to ~0 after projection
onto the block rn ` k ´ β : n ` kq, but this becomes increasingly unlikely as the
dimension β of the block grows.
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Fig. 2. Comparison of asymptotic estimates and new fatigue point for n Ñ 8 when
the secret key coefficients have standard deviation σ “ Θp1q.

into several steps, but now derive heuristic expectations instead of loose upper
bounds.

We assume that lattice vectors we encounter follow the Gaussian heuristic,
and thus in particular that vectors are spherically distributed after normalisa-
tion. When projecting such vectors to a lower dimension they become shorter.
The following Lemma shows how much shorter we expect them to become.

Lemma 4.1. Let x P Sd´1 follow a spherical distribution, and let πV : Rd Ñ V
be a projection to some k-dimensional subspace V Ă Rd, then

Erlnp‖πV pxq‖qs “
1

2
pψpk{2q ´ ψpd{2qq.

Proof. Let X0, . . . , Xd´1 be standard normal random variables, then the vector

x “ px0, . . . , xd´1q, with xj “ Xj{

b

řd´1
i“0 X

2
i , is spherically distributed. With-

out loss of generality we can assume that πV projects onto the first k-coordinates.
Then we conclude by Lemma 2.1 that

Erlnp‖πV pxq‖qs “
1

2
E

«

ln

˜

řk´1
i“0 X

2
i

řd´1
i“0 X

2
i

¸ff

“
1

2
E

«

ln

˜

k´1
ÿ

i“0

X2
i

¸ff

´
1

2
E

«

ln

˜

d´1
ÿ

i“0

X2
i

¸ff

“
1

2
pψpk{2q ´ ψpd{2qq.

[\

4.1 Intersection

We start by giving a concrete average-case estimate for the intersection volumes.
Assuming that projections behave as random we obtain the following concrete
estimate.
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Claim 4.2 Let L be a 2n-dimensional NTRU lattice with dense sublattice LGF ,
before the DSD event is triggered we have for k “ 1, . . . , n that dim

´

LGF
Xr0:n`kq

¯

“

k, and

Erln volpLGF
Xr0:n`kqqs “ ln volpLGF q ´

˜

2n´1
ÿ

j“n`k

ln
∥∥b˚j∥∥

¸

`

n
ÿ

l“k`1

ψ

ˆ

l

2

˙

´ ψ

ˆ

n` l

2

˙

`
ζ 1plq

ζplq
,

where ζplq :“
ř8

m“1
1
ml

is the Riemann zeta function and ζ 1plq :“
ř8

m“1
lnpmq
ml

its derivative.

Justification. We follow the proof of Lemma 3.3. It is tight except for the length
decrease from ‖d‖ to the projected and primitive vector ‖πpdq‖ {m. Note that
when obtaining ln vol

´

LGF
Xr0:n`l´1q

¯

from ln vol
´

LGF
Xr0:n`lq

¯

for some l “ k `

1, . . . , n, the dual vector d lives in a pn` lq-dimensional space and is projected
to an l-dimensional space. Heuristically we assume that the normalisation of d is
spherically distributed (or that π projects to a random l-dimensional subspace).
By Lemma 4.1 the log-expected decrease in length from this projection then
equals

E rlnpπp‖d‖qq ´ lnp‖d‖qs “ ψ

ˆ

l

2

˙

´ ψ

ˆ

n` l

2

˙

.

To conclude we also have to include the primitivity of πpdq and thus the log-
expectation of m ě 1 such that πpdq{m is primitive. For any basis d0, . . . ,dl´1

and πpdq “
řl´1
i“0 xidi, we have m “ gcdpx0, . . . , xl´1q. Heuristically we assume

that the absolute coefficients |x0|, . . . , |xl´1| are random integers in the interval
t1, . . . , Bu and we let B Ñ8. For l ě 2 we have (see e.g. [DE`04])

PxPt1,...,Bul rgcdpx0, . . . , xl´1q “ ms “
1

ζplq
¨
1

ml
`OplnpBq{pBml´1qq,

where the Riemann zeta function ζplq “
ř8

m“1
1
ml

is just the normalisation
factor. From this we conclude that

lim
BÑ8

ExPt1,...,Bulrln gcdpx0, . . . , xl´1qs “ lim
BÑ8

1

ζplq

B
ÿ

m“1

„

lnpmq

ml
`O

ˆ

lnpmq lnpBq

Bml´1

˙

“ ´
ζ 1plq

ζplq

for l ě k ` 1 ě 2. 4
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Fig. 3. Experimental values of ln vol
`

LGF
Xr0:n`kq

˘

versus Claim 4.2 for circulant and
matrix NTRU respectively. For each variant we used 256 LLL reduced NTRU lattices
with parameters q “ 257, n “ 79, σ2

“ 2
3
and computed the intersection for each k.

Validation. To validate Claim 4.2 we computed the actual intersection volumes
vol

´

LGF
Xr0:n`kq

¯

for LLL reduced NTRU instances. We observed here, and also

in further experiments, that the dimension assumption dim
´

LGF
Xr0:n`kq

¯

“ k

holds before we get close to triggering the DSD event. Figure 3 shows that our
prediction perfectly matches the experiments for matrix NTRU. For circulant
NTRU we see both that the expectation is slightly off and that the variance
is much higher. The higher variance can be explained from the fact that the
projections are very much dependent due to the circulant structure; in fact a
closer inspection shows that for k close to n the differences with the prediction
are highly correlated. We were not able to explain the error in the predicted
expectation, but it seems to be caused by the circulant structure in combination
with the Z-shape: the error decreased and eventually disappeared for large values
of q and σ, for which the Z-shape disappeared (and before the DSD event was
triggered). A maximal log-error of 2.5 is reached at k “ 1. Note that a log-error
of ε on vol

`

LGF
Xr0:n`kq

˘

translate into a factor of eε{k on the predicted length for
the shortest vector. Except for very small k, this error appears benign.

4.2 Dense sublattice

In this section we give a concrete estimate for the expected volume of the dense
NTRU sublatice LGF . Directly from the construction we obtain a basis rG|F s
of LGF , with F invertible. We consider two cases, that of regular NTRU where
F and G are circulant matrices, and that of matrix NTRU, where all entries
are independently sampled. For both constructions the entries are sampled from
independent discrete Gaussians over Z, with some standard deviation σ ą 0.
As the only heuristic we assume that the individual entries in fact follow a
continuous Gaussian instead of the discrete one.
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Matrix NTRU. We start with matrix NTRU, where we heuristically assume
that all 2nˆn coefficients of the basis rG|F s are sampled according to indepen-
dent continuous Gaussians with standard deviation σ. Under this heuristic we
can derive an exact expression for the expected log-volume of the dense sublat-
tice.

Lemma 4.3. Let rG|F s be a basis of the lattice LGF where all sampled entries
are i.i.d. continous Gaussians with standard deviation σ ą 0, then

ErlnpvolpLGF qqs “
1

2
n
`

lnp2σ2q ` ψpnq
˘

`

n´1
ÿ

i“0

„

ψ

ˆ

2n´ i

2

˙

´ ψpnq



.

Proof. By Lemma 2.1 the log-expectation of the norm of each basis element
equals plnp2σ2q`ψpnqq{2. Note that the i-th Gram-Schmidt vector b˚i is obtained
after projecting the i-th basis vector orthogonally away from an i-dimensional
subspace, and thus onto a 2n ´ i dimensional subspace. However after normal-
isation the basis vectors follow a spherical distribution and thus by Lemma 4.1
we have

Erln ‖b˚i‖s “ plnp2σ2q ` ψpnqq{2` ψ

ˆ

2n´ i

2

˙

´ ψpnq.

We conclude by noting that ErlnpvolpLGF qqs “
řn´1
i“0 Erln ‖b˚i‖s. [\
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Fig. 4. Experimental values of lnpvolpLGF
qq versus Lemma 4.3 for matrix NTRU with

discrete Gaussians and variance σ2
“ 2

3
. For each parameter n we generated 512

instances.

Circulant NTRU. For circulant NTRU both G and F in the basis rG|F s
are circulant matrices. Again we replace discrete with continuous Gaussians.
The eigenvalues and eigenvectors of a circulant matrix are well known and we
use this to obtain an exact expression for the expected volume of the dense
sublattice.
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Lemma 4.4. Let rG|F s be a basis of the lattice LGF where G,F are circu-
lant and all sampled entries are i.i.d. continous Gaussians with with standard
deviation σ ą 0, then

ErlnpvolpLGF qqs “
1

2
n
`

lnp2nσ2q ` ψp1q
˘

`
1

2
pn´ 1qp1´ lnp2qq.

Proof. For nˆn circulant matrices G,F the eigenvectors are identical and given
by vj :“ p1, ωj , ω2j , ωpn´1qjq for j “ 0, . . . , n ´ 1, where ω :“ e2πi{n P C is a
primitive n-th root of unity. Suppose that the circulant matrix G is generated
by the vector c “ pc0, . . . , cn´1q, then the corresponding eigenvalues are given by
the DFT coefficients of c, namely λj :“ c0 ` cn´1ω

j ` . . .` c1ω
pn´1qj . We have

that λ0 “
řn´1
j“0 cj , and thus λ0 follows a Gaussian distribution with variance

nσ2, and in particular λ20 „ χ2
1,nσ2 . Additionally for j “ 1, . . . , n´1 we can write

λj “ X ` i ¨ Y P C where X,Y P R are both linear combinations of the ci’s and
thus pX,Y q follows a jointly Gaussion distribution. A simple computation shows
thatX and Y both have variance nσ2{2 and that they are uncorrelated, which for
Gaussians implies that they are independent [PS89, p. 212]. So |λj |2 “ X2`Y 2 „

χ2
2,nσ2{2. Note that all circulant matrices have the same eigenvectors and thus

the squared singular values of the concatenation of two circulant matrices are
the sum of the squared absolute eigenvalues. So rG|F s has one squared singular
value s20 distributed as χ2

1,nσ2 ` χ2
1,nσ2 “ χ2

2,nσ2 , and n ´ 1 squared singular
values s21, . . . , s2n´1 distributed as χ2

2,nσ2{2 ` χ
2
2,nσ2{2 “ χ2

4,nσ2{2. By Lemma 2.1
they have a log-expectation of

Erln s20s “ lnp2nσ2q ` ψp1q, and Erln s2j s “ lnpnσ2q ` ψp2q

for j “ 1, . . . , n´1. We conclude by noting that ErlnpvolpLGF qqs “ 1
2

řn´1
i“0 lnps2i q.
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Validation. To validate our concrete estimate for volpLGF q we generated the
NTRU sublattice for several dimensions and computed its volume. We sample
the secret coefficients following a discrete Gaussian with variance σ2 “ 2

3 and
ran experiments for both matrix NTRU and circulant NTRU. In Figures 4 and
5 we see that the predictions from Lemmas 4.3 and 4.4 perfectly fit the observed
volumes in all dimensions. We do note that the variance is quite significant for
the circulant case, but it can be fully explained by the computed eigenvalue
distributions in the proof of Lemma 4.4. We will later see that this high variance
has a large influence on the successful BKZ blocksize (Section 5.1, Figure 7).

4.3 Further Refinements

We discuss some further refinements, some of which were already successfully
applied to the 2016 Estimate [AGVW17, DDGR20, PV21].

Gaussian Heuristic. For our asymptotic analysis we used Minkowski’s bound to
estimate the length λ1

´

LGF
Xr0:n`kq

¯

in terms of the volume vol
´

LGF
Xr0:n`kq

¯

. A
natural way to obtain a concrete estimate for the expected minimal length is
by assuming that the intersection LGF

Xr0:n`kq follows the Gaussian Heuristic and
thus for our prediction we assume that

λ1

´

LGF
Xr0:n`kq

¯

“ ghpLGF
Xr0:n`kqq «

a

k{p2πeq ¨ vol
´

LGF
Xr0:n`kq

¯1{k

.

We should however be careful with this assumption, as in fact it is false for k “ n.
E.g. the above predicts that λ1pLGF q «

a

n{p2πeq ¨
?
2nσ2, while we know

that λ1pLGF q “ ‖pg,fq‖ «
?
2nσ2, a factor Θp

?
nq shorter than predicted.

The reason for this is that the dense sublattice is up to rotation and scaling
very similar to the orthogonal lattice Zn, precisely the lattice for which it is
well known that the Gaussian Heuristic is false. For small k ! n we do observe
that the intersected lattice LGF

Xr0:sq follows the Gaussian Heuristic; the orthogonal
structure seems to be broken by the intersection. However we do not have a clear
idea how large k can become before the orthogonal structure returns and the
minimal length stops following the prediction from the Gaussian Heuristic. We
think this behaviour deserves some further investigation, e.g. if the transition is
very sudden or not, and we leave it as an open problem. This near-orthogonality
of LGF

Xr0:sq may be critical to model the DSD-LL events.

Probabilities. So far we have only considered expectations of volumes and projec-
tions. While this is enough to give a rough concrete estimate we want to be more
precise. Success probabilities can accumulate up over multiple BKZ blocks and
(progressive) tours, possibly leading to success at much lower blocksizes than
the rough estimate. We continue using the expected values for the volume of
the dense sublattice and the intersection volumes to obtain the expected length
λ1
`

LGF
Xr0:sq

˘

of the dense sublattice vector via the Gaussian Heuristic. However
we then model the short dense sublattice vector v P LGF

Xr0:sq as an s-dimensional
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Gaussian vector with the same expected length; allowing us to compute the
exact probability that

›

›πs´βpvq
›

› ď
›

›b˚s´β} using the CDF of the chi-square
distribution with β degrees of freedom.

Up to now we have ignored the probability that after πs´βpvq is inserted, it
is also correctly lifted to the full vector v by later BKZ tours. While this almost
always happens for higher blocksizes, it is not so likely for lower blocksizes, and
ignoring this leads to overly optimistic predictions. For BKZ-β to successfully lift
or eventually pull the vector v to the front it should also satisfy ‖πipvq‖ ď ‖b˚i‖
for all i “ s ´ 2β ` 1, s ´ 3β ` 2, . . .. These conditions are not independent
which makes them hard to compute exactly. We simplify the computation by
only considering the dependence for consecutive positions i, i ´ β ` 1 as done
in [DDGR20]. We iteratively run our estimator for progressive β “ 2, 3, . . . and
take account of all probabilities assuming that all tours behave completely inde-
pendently. Our new concrete estimate will be the expected successful blocksize.
Additionally this allows us to combine both the (probabilistic) SKR 2016 Es-
timate and our new DSD-PT estimate in a single estimator. With some more
administration we can also predict the distribution of the successful location κ,
and predict the probability that the SKR event happens before the DSD event.

BKZ shape for low blocksizes. While the formulas for the (Z)GSA slope αβ and
the expected first minimum ghpβq convert to the experimental values for large
blocksizes of say β ě 50, they are not as accurate for small β. As expected the
convergence is worse for progressive BKZ when we only use a few tours of each
blocksize. We ran some experiment on random low dimensional q-ary lattices
to obtain practical estimates for ghpβq with β ď 50. Earlier works about the
2016 Estimate resorted to BKZ simulators to predict the BKZ shape, which
account for the number of tours and also the special shape of the head and tail
that do not perfectly follow the GSA shape. Together with the earlier mentioned
refinements this resulted in very precise predictions [DDGR20, PV21]. However
how BKZ acts on a Z-shaped basis is much less understood and as of yet there
are no accurate BKZ simulators. Understanding the behaviour and creating an
accurate simulator would be very interesting, but is out of the scope of this
work. We continue using the ZGSA, but we resort to experimental values for
αβ obtained by running BKZ on random q-ary lattices for large q. To remain
consistent we also do not use a simulator for the GSA shape, and accept the
small discrepancy between the predictions and practical experiments.

5 Experimental Verification

5.1 Successful blocksize

We start with comparing our concrete predictions to the preliminary experi-
ment from Section 3.1. We ran progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 127, σ2 “ 2

3 for several moduli q. In Figure 6
we show the blocksizes at which the SKR or DSD event is first detected, and
compare them to our concrete estimator. We ran the estimator three times for
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Fig. 6. Experiment versus prediction for progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 127, σ2

“ 2
3
for several moduli q. We did 10 runs per

modulus q.

each modulus q: only accounting for SKR, only accounting for DSD-PT, and
accounting for both. Note that the combined estimate can be strictly lower than
both the first two because the probabilities to succeed accumulate over both
events. We calibrated the values of αβ by running the same BKZ routine on
p2 ¨ 127q-dimensional q-ary lattices with q « 220.

We observe that the experiments match the estimates reasonably well, with
an average blocksize error of less than 2 for the DSD events and less than 3 for
the SKR events. We shortly discuss potential sources of the small errors error.

– We do not actually run the classical BKZ algorithm, but the BKZ 2.0 algo-
rithm as it is more feasible to run for large blocksizes. One part of the latter
algorithm is that in each BKZ block rκ : κ ` βq the last β ´ 1 vectors are
randomised before finding a short projected vector. This temporarily breaks
the GSA shape and results a small ‘bump’ in the profile that is pushed to
the right during a tour. On average we measured at the SKR events a log-
increase of 0.048 on the value of ‖b˚κ‖ compared to the GSA (while the rest
of the basis matches very closely). Although anecdotal, adjusting our esti-
mator with this offset of 0.048 resulted in very close predictions for the SKR
events.

– For small blocksizes β ď 30 we see that our DSD-PT estimate is slightly
pessimistic compared to the experiments. However the successful profile slope
αβ (computed from the profile at the moment of detection) does closely
match the predicted slope αβpred , pointing to a wrong calibration of the
slope parameter for very low blocksizes. Note that the non-flat part of the
Z-shape in our experiments has size less than the 2 ¨ 127 dimensional lattice
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Fig. 7. Results from running progressive BKZ with 8 tours on 200 circulant NTRU
instances in the overstretched regime with parameters n “ 151, q “ 2003 and σ2

“ 2
3
.

(a) Distribution of κ at which the DSDκ event is triggered. (b) The log-length decrease
from ‖v‖ to ‖πκpvq‖ normalised by the expected decrease (Lemma 4.1). (c) Successful
blocksize β versus the position κ, and (d) versus the volume volpLGF

q.

used for calibration, which plausibly explain why the slope converges more
quickly than expected.

5.2 Detailed behaviour

Because the estimator computes actual probabilities we can compare our predic-
tions to the experiments on a deeper level. We ran 200 experiments on circulant
NTRU instances with parameters n “ 151, q “ 2003 and σ2 “ 2

3 . These param-
eters fall into the overstretched regime. The results, compared to our estimator,
are shown in Figure 7. The average successful blocksize over all 200 instances
is βavg “ 40.99, which is close to the estimated value of βpred “ 41.21. We
note however that the average squared error is as large as 16.9; the successful
blocksizes range from 27 to 49 for identical initial parameters. Looking at Figure
7(d) we see that this can mostly be explained by the large variance of the vol-
ume of the dense sublattice volpLGF q, as earlier noticed in Figure 5. Adjusting
the estimate with the concrete volume (instead of the average case prediction)
decreases the average squared error all the way down to 0.83. E.g. the large av-
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erage squared error is not an imprecision of the estimator, but an inherent high
variance in the hardness of circulant NTRU instances.

We now take a look at the positions κ at which the DSDκ events took place.
In Figure 7(a) we see that most events (169{200) happen for κ ď n, as predicted
by our DSD-PT estimate. We see in Figure 7(b) that for these instances the
projection πκpvq of the dense sublattice vector v is also not much shorter than
expected, which matches the DSD-PT event as defined in Section 3.1. For the
remaining events (31{200) with κ ą n we note that κ seems to be evenly dis-
tributed over n` 1, . . . , 2n´ β, while the projected length becomes increasingly
smaller than expected for increasing κ.

These DSD-LL events do not seem properly predicted by our model. Indeed,
looking at κ around 2n´β our model predicts that the probability that a random
vector has such a short projection is as small as 10´55, and the probability that
such a vector would correctly be lifted by Babai’s nearest plane algorithm is
even smaller (see script lucky_lift.sage). Interestingly however is that the
transition between DSD-PT and DSD-LL events is rather continuous, and it is
not so clear where to put the threshold between these two events.

In Figure 7(c) we see no clear difference between the successful blocksizes
at positions κ ď n versus those at κ ą n, and their average of 41.1 and 40.4
respectively. This suggests that, at least for these parameters, the DSD-LL events
do not significantly contribute to making the attack cheaper.

In Figure 7(a) we also show the predicted distribution of the event positions
κ. We correctly predicted the peak around κ « n ´ 1

2βpred, and that κ ď n for
the DSD-PT events. However our prediction is much more concentrated than
the experimentally observed events, and neglects to notice the events at κ ď
n´ 1

2βpred. We give two possible explanations for this.

– The estimate assumes an average-case dense sublattice volume, ignoring the
high variance of the dense sublattice volume. Adjusting for this using the real
volumes makes the prediction less concentrated and closer to the observed
events. However this still not captures the events at κ ď n´ 1

2βpred.
– The experiments and the estimator inherently measure two different things.

The experiment detects a DSDκ event if the projection πκpvq is inserted and
is lifted to a dense sublattice vector v by Babai’s nearest plane algorithm.
The estimator however estimates the probability that the projection is short
enough and that the projection is eventually lifted to the dense sublattice
vector v by later tours of the BKZ algorithm. Therefore a DSD-PT event
predicted at position κ might experimentally only be detected one tour later
at κ´ β ` 1 or at an even lower position. This could potentially be resolved
by also taking into account the direct lift of Babai’s nearest plane in the
estimator, but note that for the eventual goal of estimating the successful
blocksize this will not matter.

5.3 Fatigue Point

Our concrete estimator follows the experiments reasonably well and thus we can
use it to estimate the concrete fatigue point for dimensions that are not feasible in
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practice. To verify our estimate of the fatigue point we also did some experiments
in dimensions that are still feasible. For this we ran a soft binary search, only
decreasing the interval length by 3{4 so as not view a probabilistic result as a
definitive answer. More specifically, starting with a range of rqmin, qmaxs we ran
an experiment for a prime q « pqmin` qmaxq{2. If it succeeds with an SKR event
we update qmin to pqmin ` qq{2 ` 1, if it succeeds with a DSD event we update
qmax to pqmax ` qq{2´ 1. We repeat this until the interval does not contain any
prime and we return pqmin ` qmaxq{2 as a rough estimate of the fatigue point.
We averaged this over 20 experiments for each parameter n. We chose for matrix
NTRU because of the lower variance in the hardness of these instances.

We compared this to our prediction. Because the estimator accounts for prob-
abilities of events, we can predict for which value of q about 50% of the instances
succeeds with a DSD event. Because it would be unreasonable to calibrate the
low blocksize slope values αβ for each dimension we reused those of the 2 ¨ 127
dimensional q-ary lattice from an earlier experiment. This might make the esti-
mates a bit less precise for n ! 127, and n " 127 if the successful blocksize is
small around the fatigue point.

The results are shown in Figure 8 and plotted against Cn2.484 for several con-
stants C. Remarkably the experiments and concrete predictions closely follow the
asymptotics already for reasonably small values of n. A loglog-linear regression
of the 50% DSD-PT estimate over all primes 199, . . . , 499 gives 0.0034¨n2.506. Re-
stricting the exponent to 2.484 gives 0.0038 ¨n2.484 with a log-standard deviation
of only 0.006.
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Fig. 8. Concrete fatigue point versus asymptotics using progressive BKZ with 8 tours
on matrix NTRU instances with variance σ2
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3
. The 0.5 percentile line shows for

which q we estimate that the DSD event is triggered before the SKR event for about
50% of the instances.
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for several moduli q. We did 100 runs per

modulus q and the plot shows the ratio of these runs succeeding with a DSD event
(before an SKR event).

The experimental average appears slightly higher than the estimator predic-
tion for 50% DSD - 50% SKR. The main reason for this seems to be that the
estimator is slightly pessimistic for detecting the SKR event, as already observed
and explained in Section 5.1. Another small detail is that the binary search is
slightly biased to higher values of q because at each iteration we pick the next
prime after pqmin ` qmaxq{2.

5.4 Zoom on the Fatigue point: a smooth probabilistic transition

We take a closer look at the transition from the non-overstretched to the over-
stretched regime. For this we ran several experiments on matrix NTRU instances
with parameters n “ 113, σ2 “ 2

3 for several moduli q, with 100 runs each. We
compare the DSD success ratio with our probabilistic concrete estimate. The
results are shown in Figure 9. Just as in Figure 8 we see a shift between the
experiment and prediction, which can again be explained by our SKR estimator
being too pessimistic. Note however that while the discrepancy looks significant
in this zoomed plot, it only emphasises a small error of about 2 block sizes be-
tween the experiments and our predictions. Ignoring this shift the shape of the
predicted transition matches the experiments very well.
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